Veterinary Research Communications

, Volume 35, Issue 6, pp 355–365 | Cite as

Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells

  • Oksana Raabe
  • Katja Shell
  • Antonia Würtz
  • Christine Maria Reich
  • Sabine Wenisch
  • Stefan Arnhold
Original Article


Adipose tissue-derived stem cells (ADSCs) represent a promising subpopulation of adult stem cells for tissue engineering applications in veterinary medicine. In this study we focused on the morphological and molecular biological properties of the ADSCs. The expression of stem cell markers Oct4, Nanog and the surface markers CD90 and CD105 were detected using RT-PCR. ADSCs showed a proliferative potential and were capable of adipogenic and osteogenic differentiation. Expression of Alkaline phosphatase (AP), phosphoprotein (SPP1), Runx2 and osteocalcin (OC) mRNA were positive in osteogenic lineages and peroxisome proliferator activated receptor (Pparγ2) mRNA was positive in adipogenic lineages. ADSCs show stem cell and surface marker profiles and differentiation characteristics that are similar to but distinct from other adult stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs). The availability of an easily accessible and reproducible cell source may greatly facilitate the development of stem cell based tissue engineering and therapies for regenerative equine medicine.


Adipose tissue Stem cells Differentiation mRNA expression Tissue engineering 


  1. Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF (2007) Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. Am J Vet Res 68:1095–1105PubMedCrossRefGoogle Scholar
  2. Arrigoni E, Lopa S, de Girolamo L, Stanco D, Brini AT (2009) Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res 338:401–411PubMedCrossRefGoogle Scholar
  3. Carrade DD, Owens SD, Galuppo LD, Vidal MA, Ferraro GL, Librach F, Buerchler S, Friedman MS, Walker NJ, Borjesson DL (2011) Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses. Cytotherapy 13:419–430PubMedCrossRefGoogle Scholar
  4. Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C, Lazzari G (2009) Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Vet Res Commun 33:811–821PubMedCrossRefGoogle Scholar
  5. Cremonesi F, Violini S, Lange Consiglio A, Ramelli P, Ranzenigo G, Mariani P (2008) Isolation, in vitro culture and characterization of foal umbilical cord stem cells at birth. Vet Res Commun 1:139–142CrossRefGoogle Scholar
  6. da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213CrossRefGoogle Scholar
  7. de Mattos CA, Alves ALG, Golim MA, Moroz A, Hussni CA, de Oliveira PGG, Deffune E (2009) Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue. Vet Immunol Immunopathol 132:303–306CrossRefGoogle Scholar
  8. de Mattos CA, Alves ALG, Oliveira PGG, Álvarez LEC, Amorim RL, Hussni CA, Deffune E (2011) Use of Adipose Tissue-Derived Mesenchymal Stem Cells for Experimental Tendinitis Therapy in Equines. J Equine Vet Sci 31:26–34Google Scholar
  9. de Schauwer C, Meyer E, van de Walle GR, van Soom A (2011) Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology 75:1431–1443PubMedCrossRefGoogle Scholar
  10. Del Bue M, Riccò S, Ramoni R, Conti V, Gnudi G, Grolli S (2008) Equine adipose-tissue derived mesenchymal stem cells and platelet concentrates: their association in vitro and in vivo. Vet Res Commun 32:51–55CrossRefGoogle Scholar
  11. Dragoo JL, Lieberman JR, Lee RS, Deugarte DA, Lee Y, Zuk PA, Hedrick MH, Benhaim P (2005) Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast Reconstr Surg 115:1665–1673PubMedCrossRefGoogle Scholar
  12. Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T, Takase B, Ishizuka T, Kikuchi M, Fujikawa K, Ishihara M (2004) Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs 178:2–12PubMedCrossRefGoogle Scholar
  13. Hoynowski SM, Fry MM, Gardner BM, Leming MT, Tucker JR, Black L, Sand T, Mitchell KE (2007) Characterization and differentiation of equine umbilical cord-derived matrix cells. Biochem Biophys Res Commun 362:347–353PubMedCrossRefGoogle Scholar
  14. Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD (2008) Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J Orthop Res 26:322–331PubMedCrossRefGoogle Scholar
  15. Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–1312PubMedCrossRefGoogle Scholar
  16. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14:311–324PubMedCrossRefGoogle Scholar
  17. Lin Y, Liu L, Li Z, Qiao J, Wu L, Tang W, Zheng X, Chen X, Yan Z, Tian W (2006) Pluripotency potential of human adipose-derived stem cells marked with exogenous green fluorescent protein. Mol Cell Biochem 291:1–10PubMedCrossRefGoogle Scholar
  18. Mambelli LI, Santos EJ, Frazão PJ, Chaparro MB, Kerkis A, Zoppa AL, Kerkis I (2009) Characterization of equine adipose tissue-derived progenitor cells before and after cryopreservation. Tissue Eng Part C Methods 15:87–94PubMedCrossRefGoogle Scholar
  19. Martinello T, Bronzini I, Maccatrozzo L, Mollo A, Sampaolesi M, Mascarello F, Decaminada M, Patruno M (2010a) Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res Vet Sci [Epub ahead of print]Google Scholar
  20. Martinello T, Bronzini I, Maccatrozzo L, Iacopetti I, Sampaolesi M, Mascarello F, Patruno M (2010b) Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood. Tissue Eng Part C Methods 16:771–781PubMedCrossRefGoogle Scholar
  21. Mimeault M, Batra SK (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 4:27–49PubMedCrossRefGoogle Scholar
  22. Neupane M, Chang C, Kiupel M, Yuzbasiyan-Gurkan V (2008) Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A 14:1007–1015PubMedCrossRefGoogle Scholar
  23. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL (2008) Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 69:928–37PubMedCrossRefGoogle Scholar
  24. Raabe O, Reich C, Wenisch S, Hild A, Burg-Roderfeld M, Siebert H, Arnhold S (2010) Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells. Histochem Cell Biol 134:545–554PubMedCrossRefGoogle Scholar
  25. Rebelatto CK, Aguiar AM, Moretão MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligovski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldenberg S, Nakao LS, Correa A (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 233:901–913CrossRefGoogle Scholar
  26. Reed SA, Johnson SE (2008) Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. J Cell Physiol 215:329–336PubMedCrossRefGoogle Scholar
  27. Ribitsch I, Burk J, Delling U, Geißler C, Gittel C, Jülke H, Brehm W (2010) Basic science and clinical application of stem cells in veterinary medicine. Adv Biochem Eng Biotechnol 123:219–263PubMedGoogle Scholar
  28. Richardson LE, Dudhia J, Clegg PD, Smith R (2007) Stem cells in veterinary medicine–attempts at regenerating equine tendon after injury. Trends Biotechnol 25:409–416PubMedCrossRefGoogle Scholar
  29. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234PubMedCrossRefGoogle Scholar
  30. Torres FC, Rodrigues CJ, Stocchero IN, Ferreira MC (2007) Stem cells from the fat tissue of rabbits: an easy-to-find experimental source. Aesthetic Plast Surg 31:574–578PubMedCrossRefGoogle Scholar
  31. Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36:613–622PubMedCrossRefGoogle Scholar
  32. Vieira NM, Brandalise V, Zucconi E, Secco M, Strauss BE, Zatz M (2010) Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant 19:279–289PubMedCrossRefGoogle Scholar
  33. Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P (2009) Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol 10:29PubMedCrossRefGoogle Scholar
  34. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Oksana Raabe
    • 1
  • Katja Shell
    • 1
  • Antonia Würtz
    • 1
  • Christine Maria Reich
    • 1
  • Sabine Wenisch
    • 1
  • Stefan Arnhold
    • 1
  1. 1.Institute of Veterinary -Anatomy, -Histology and -EmbryologyJustus-Liebig University of GiessenGiessenGermany

Personalised recommendations