Skip to main content

Bile tolerant Lactobacillus reuteri isolated from pig feces inhibits enteric bacterial pathogens and porcine rotavirus

Abstract

Lactic acid producing bacterial strain Probio-16 was isolated from the swine excrements under anaerobic conditions and characterized by morphology and biochemical characteristics. The strain was further identified by 16S rRNA gene sequencing and phylogeneitc analysis. The antimicrobial activity of the strain was assayed by testing for growth inhibition of thirteen pathogenic microorganisms. The strain was tested for antiviral activity against porcine rotavirus in vitro in African green monkey epithelial cell line TF-104. Antibiotic susceptibility of the strain against 13 antibiotics was tested using disk diffusion method. Phenotypically and through 16S rRNA gene sequences, Probio-16 was identified and named as Lactobacillus reuteri Probio-16. This strain was resistant to pH 2.0, 5% porcine bile and exhibited antimicrobial activity against all the thirteen enteric bacterial pathogens tested. Probio-16 supernatant inhibited porcine rotavirus in vitro in TF-104 cell lines. Except for erythromycin and penicillin G at a concentration of 4 µg/ml, Probio-16 showed resistance to all other thirteen antibiotics tested. This study indicates L. reuteri Probio-16 as a novel strain with its tolerance to low pH and bile, antimicrobial activity, antibiotic resistance and antiviral activity against rotavirus, and an ideal probiotic candidate for animal and human application after the proper in vivo experiments.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Axelsson L, Chung TC, Dobrogosz WJ, Lindgren SE (1989) Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial Ecol Health Dis 2:131–136

    Article  Google Scholar 

  • Çaglar E, Kargul B, Tanboga I (2005) Bacteriotherapy and probiotic’s role on oral health. Oral Dis 11:131–137

    PubMed  Google Scholar 

  • Casey PG, Casey GD, Gardiner, GE, Tangney M, Stanton C, Ross RP, Hill C, Fitzgerald GF (2004) Isolation and characterization of ant-salmonella lactic acid bacteria from the porcine gastrointestinal tract. Let Appl Microbiol 39:431–438

    Article  CAS  Google Scholar 

  • Chang YH, Kim JK, Kim HJ, Kim WY, Kim YB, Park YH (2001) Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie Van Leeuwenhoek 80: 93–199

    Article  Google Scholar 

  • Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61:1636–1643

    CAS  PubMed  Google Scholar 

  • Chung JY, Sung EJ, Cho CG, Seo KW, Lee JS, Bhang DH, Lee HW, Hwag CY, Lee WK, Youn HY, Kim CJ (2009) Effect of recombinant Lactobacillus expressing canine GM-CSF on immune function in dogs. J Microbiol Biotechnol 19:1401–1407

    CAS  PubMed  Google Scholar 

  • Dashkevicz MP, Feighner SD (1989) Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl Environ Microbiol 55:11–16

    CAS  PubMed  Google Scholar 

  • De Smet I, van Hoorde L, Vande Woestyne M, Christiaens H, Verstrate W (1995) Significance of bile-salt hydrolytic activities of lactobacilli. J Appl Bacteriol 79:292–301

    PubMed  Google Scholar 

  • De Vrese M, Rautenberg P, Laue C, Koopmans M, Herremans T, Schrezenmeir J (2005) Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur J Nutr 44:406–413

    Article  PubMed  CAS  Google Scholar 

  • Drago L, Gismondo MR, Lombardi A, De Haen C, Gozzini L (1997) Inhibition of in vitro growth of enteropathogens by new Lactobacillus isolates of human intestinal origin. FEMS Microbiol Lett 153:455–463

    Article  CAS  PubMed  Google Scholar 

  • Driesen SJ, Garland PG, Fahy VA (1993) Studies on preweaning piglet diarrhea. Aust Vet J 70:259–262

    CAS  PubMed  Article  Google Scholar 

  • FAO/WHO (2001) Report on Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria (ftp://ftp.fao.org/es/esn/food/probio_report_en.pdf.). World Health Organization and Food and Agriculture Organization of the United Nations

  • Fitzgerald GR, Barker T, Welter MW, Welter CJ (1988) Diarrhea in young pigs: comparing the incidence of the five most common infectious agents. Vet Med Food Anim Pract 1:80–86.

    Google Scholar 

  • Gorbach SL (2000) Probiotics and gastrointestinal health. Am J Gastroenterol 95:S2–S4

    Article  CAS  PubMed  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 8:512–519

    Article  Google Scholar 

  • Hutkins RW, Nannen NL (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365

    CAS  Article  Google Scholar 

  • Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70:337–349

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86

    CAS  PubMed  Google Scholar 

  • Kritas SK, Morrison RB (2007) Effect of orally administered Lactobacillus casei on porcine reproductive and respiratory syndrome (PRRS) virus vaccination in pigs. Veter Microbiol 119:248–255

    Article  CAS  Google Scholar 

  • Lee NK, Yun CW, Kim SW, Chang HI, Kang CW, Park HD (2008) Screening of Lactobacilli derived from chicken feces and partial characterization of Lactobacillus acidophilus A12 as animal probiotics. J Microbiol Biotechnol 18:338–342

    CAS  PubMed  Google Scholar 

  • Mattila-Sandholm T, Matto J, Saarela M (1999) Lactic acid bacteria with health claims-interactions and interference with gastrointestinal flora. Int Diary J 9:25–35

    Article  Google Scholar 

  • Mercenier A, Pavan S, Pot B (2003) Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharm Des 9:175–191

    Article  CAS  PubMed  Google Scholar 

  • Moxley RA, Duhamel GE (1999) Comparative pathology of bacterial enteric diseases of swine. In: Francis PA (ed) International Rushmore Conference on Mechanisms in the Pathogenesis of Enteric Diseases 2, Kluwer Academic, Plenum Publishers, New York, pp. 83–101.

    Google Scholar 

  • Nowroozi J, Mirzaii M, Norouzi M (2004) Study of Lactobacillus as probiotic bacteria. Iranian J Publ Health 33:1–7

    Google Scholar 

  • Olivares M, Díaz-Ropero MP, Sierra S, Lara-Villoslada F, Fonolla J, Navas M, Rodriguez JM, Xaus J (2007) Oral intake of Lactobacillus fermentum CECT5716 enhances the effect of influenza vaccination. Nutrition 23:254–260

    Article  CAS  PubMed  Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289

    Article  CAS  PubMed  Google Scholar 

  • Ouwehand AC, Isolauri E, Salminen S (2004) The role of the intestinal microflora for the development of the immune system in early childhood. Eur J Nutr 41:I32–I37

    Google Scholar 

  • Parashar UD, Holman RC, Clarke MJ, Bresee JS, Glass RI (1998) Hospitalizations associated with rotavirus diarrhea in the United States, 1993 through 1995: surveillance based on the new ICD-9-CM rotavirus specific diagnostic code. J Infect Dis 177:13–17

    Article  CAS  PubMed  Google Scholar 

  • Perdigon G, Nader de Macias ME, Alvarez S, Oliver G, Pesce de Ruiz Holgado AA (1990) Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. J Dairy Res 57:255–264

    Article  CAS  PubMed  Google Scholar 

  • Prabha S, Verghese S (2009) Detection of porcine rotavirus from tissue and faecal specimens. Indian J Med Microbiol 27:149–52

    Article  PubMed  Google Scholar 

  • Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  • Reid G (1999) The scientific basis for probiotic strains of Lactobacillus. Appl Environ Microbiol 65:3763–3766

    CAS  PubMed  Google Scholar 

  • Reid G, McGroarty JA, Angotti R, Cook RL (1988) Lactobacillus inhibitor production against E. coli and coaggregation ability with uropathogens. Can J Microbiol 34:344–351

    CAS  PubMed  Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shornikova AV, Casas IA, Mykkanen H, Salo E, Vesikari T (1997) Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. Pediatr Infect Dis J 16:1103–1107

    Article  CAS  PubMed  Google Scholar 

  • Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris GM (2002) Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. PNAS 99:6434–6439

    Article  CAS  PubMed  Google Scholar 

  • Van Niel CW, Feudtner C, Garrison MM,Christakis DA (2002) Lactobacillus therapy for acute infectious diarrhea in children: A meta-analysis. Pediatrics 109:678–684

    Article  PubMed  Google Scholar 

  • Vescovo M, Morelli L, Bottazzi V (1982) Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. Appl Environ Microbiol 43:50–56

    CAS  PubMed  Google Scholar 

  • West CE, Gothefors L, Granstrom M, Kayhty H, Hammarstrom ML, Hernell O (2008) Effects of feeding probiotics during weaning on infections and antibody responses to diphtheria, tetanus and Hib vaccines. Pediatr Allergy Immunol 19:53–60

    PubMed  Google Scholar 

  • Woode GN, Bridger J, Hall GA, Jones JM, Jackson G (1976) The isolation of reovirus—like agents (rota-viruses) from acute gastroenteritis of piglets. J Med Microbiol 9:203–9

    Article  CAS  PubMed  Google Scholar 

  • Xanthopoulos V, Litopoulou-Tzanetaki E, Tzanetakis N (2000) Characterization of Lactobacillus strains from infant faeces as dietary adjuncts. Food Microbiol 17:205–215

    Article  Google Scholar 

  • Yoon JH, Lee ST, Park YH (1998) Inter and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Azevedo MSP, Wen K, Gonzalez A, Saif LJ,Li G, Yousef AE, Yuan L (2008) Probiotic Lactobacillus acidophilus enhances the immunogenicity of an oral rotavirus vaccine in gnotobiotic pigs. Vaccine 26:3655–3661

    Article  CAS  PubMed  Google Scholar 

  • Zhou JS, Pillidge CJ, Gopal PK, Gill HS (2005) Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol 8:211–217

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Yeungnam University Research Grants in 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ha Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seo, B.J., Mun, M.R., J, R.K.V. et al. Bile tolerant Lactobacillus reuteri isolated from pig feces inhibits enteric bacterial pathogens and porcine rotavirus. Vet Res Commun 34, 323–333 (2010). https://doi.org/10.1007/s11259-010-9357-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-010-9357-6

Keywords

  • Lactobacillus reuteri
  • Probiotics
  • Porcine rotavirus
  • Antimicrobial
  • Antiviral