Skip to main content
Log in

Plasma Disposition and Faecal Excretion of Netobimin Metabolites and Enantiospecific Disposition of Albendazole Sulphoxide Produced in Ewes

  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Netobimin (NTB) was administered orally to ewes at 20 mg/kg bodyweight. Blood and faecal samples were collected from 1 to 120 h post-treatment and analysed by high-performance liquid chromatography (HPLC). Using a chiral phase-based HPLC, plasma disposition of albendazole sulphoxide (ABZSO) enantiomers produced was also determined. Neither NTB nor albendazole (ABZ) was present and only ABZSO and albendazole sulphone (ABZSO2) metabolites were detected in the plasma samples. Maximum plasma concentrations (C<max) of ABZSO (4.1 ± 0.7 μg/ml) and ABZSO2 (1.1 ± 0.4 μg/ml) were detected at (t max) 14.7 and 23.8 h, respectively following oral administration of netobimin. The area under the curve (AUC) of ABZSO (103.8 ± 22.8 (μg h)/ml) was significantly higher than that ABZSO2(26.3± 10.1 (μg h)/ml) (p<0.01). (−)−ABZSO and (+)-ABZSO enantiomers were never in racemate proportions in plasma. The AUC of (+)-ABZSO (87.8±20.3 (μg h)/ml) was almost 6 times larger than that of (−)−ABZSO (15.5 ±5.1 (μg h)/ml) (p < 0.001). Netobimin was not detected, and ABZ was predominant and its AUC was significantly higher than that of ABZSO and ABZSO2, following NTB administration in faecal samples (p > 0.01). Unlike in the plasma samples, the proportions of the enantiomers of ABZSO were close to racemic and the ratio of the faecal AUC of (−)−ABZSO (172.22 ±57.6 (μg h)/g) and (+)-ABZSO (187.19 ±63.4 (μg h)/g) was 0.92. It is concluded that NTB is completely converted to ABZ by the gastrointestinal flora and absorbed ABZ is completely metabolized to its sulphoxide and sulphone metabolites by first-pass effects. The specific behaviour of the two enantiomers probably reflects different enantioselectivity of the enzymatic systems of the liver that are responsible for sulphoxidation and sulphonation of ABZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABZ:

albendazole

ABZSO:

albendazole sulphoxide

ABZSO2 :

albendazole sulphone

AUC:

area under the plasma concentration–time curve

AUMC:

area under the first moment curve

DMSO:

dimethyl sulphoxide

FBZSO:

oxfendazole

FMO:

flavin-containing monooxygenase

HPLC:

high-performance liquid chromatography

MRT:

mean residence time

NTB:

netobimin

References

  • Alvarez, L., Sanchez, S. and Lanusse, C., 1999. In vivo and ex vivo uptake of albendazole and its sulphoxide metabolite by cestode parasites: relationship with their kinetics behaviour in sheep. Journal of Veterinary Pharmacology and Therapeutics 22, 77–86

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, L., Imperiale, F., Sanchez, S., Murno, G. and Lanusse, C., 2000. Uptake of albendazole and albendazole sulphoxide by Haemonchus contortus and Fasciola hepatica in sheep. Veterinary Parasitology 94 75– 89

    Article  PubMed  CAS  Google Scholar 

  • Benoit, E., Besse, S. and Delatour, P., 1992. Effect of repeated doses of albendazole on enantiomerism of its sulphoxide metabolite in goats. American Journal of Veterinary Research, 53, 1663–1665.

    PubMed  CAS  Google Scholar 

  • Blume, R.R., Younger, R.L., Aga, A. and Myers, C.J., 1976. Effects of residues of certain anthelmintics in bovine manure on Onthophagus gazella, a non-target organism. Southwest Entomologist, 1, 100–103

    CAS  Google Scholar 

  • Capece, B.P., Calsamiglia, S., Castells, G., Arboix, M. and Cristofol, C., 2001. Effect of ruminal microflora on the biotransformation of netobimin, albendazole, albendazole sulfoxide, and albendazole sulfoxide enantiomers in an artificial rumen. Journal of Animal Science, 79, 1288–1294

    PubMed  CAS  Google Scholar 

  • Cristofol, C., Carretero, A., Fernandez, M., Navarro, M., Sautet, J., Ruberte, J. and Arboix, M., 1995. Transplacental transport of netobimin metabolites in ewes. European Journal of Drug Metabolism and Pharmacokinetics, 20, 167–171

    Article  PubMed  CAS  Google Scholar 

  • Cristofol, C., Franquelo, C., Navarro, M., Carretero, A., Ruberte, J. and Arboix, M., 1997. Comparative pharmacokinetics of netobimin metabolites in pregnant ewes. Research in Veterinary Science, 62, 117–120

    Article  PubMed  CAS  Google Scholar 

  • Delatour, P. and Parish, R., 1986. Benzimidazole anthelmintics and related compounds: toxicity and evaluation of residues. In: A.G. Rico (ed.), Drug Residues in Animals, (Academic Press, New York), 175–203

  • Delatour, P., Cure, M.C., Benoit, E. and Garnier, F., 1986. Netobimin (Totabin-SCH): preliminary investigation on metabolism and pharmacology. Journal of Veterinary Pharmacology and Therapeutics, 9, 230– 234

    PubMed  CAS  Google Scholar 

  • Delatour, P., Benoit, E., Garnier, F. and Besse, S., 1990. Chirality of the sulphoxide metabolites of fenbendazole and albendazole in sheep. Journal of Veterinary Pharmacology and Therapeutics, 13, 361–366

    PubMed  CAS  Google Scholar 

  • Delatour, P., Garnier, F., Benoit, E. and Caude, I., 1991a. Chiral behaviour of the metabolite albendazole sulphoxide in sheep, goats and cattle. Research in Veterinary Science, 50, 134–138

    CAS  Google Scholar 

  • Delatour, P., Benoit, E., Besse, S. and Boukraa, A., 1991b. Comparative enantioselectivity in the sulphoxidation of albendazole in man, dogs and rats. Xenobiotica, 21, 217–221

    Article  CAS  Google Scholar 

  • Delatour, P., Benoit, E. and Soraci, A., 1994. Reckebusch Memorial Lecture: Drug chirality: its significance in veterinary pharmacology and therapeutics. In: P. Lees (ed.), Proceedings of the 6th International Congress of the European Association for Veterinary Pharmacology and Toxicology, (Blackwell Scientific, Edinburgh) 6–9

  • Duwel, D., 1977. Fenbendazole II, biological properties and activity. Pesticide Science, 8, 550–555

    Google Scholar 

  • Galtier, P., Alvinerie, M. and Delatour, P., 1986. In vitro sulphoxidation of albendazole by ovine liver microsomes: assay and frequency of various xenobiotics. American Journal of Veterinary Research, 47, 447–450

    PubMed  CAS  Google Scholar 

  • Galtier, P., Alvinerie, M., Steimer, J.L., Francheteau, P., Plusquellec, Y. and Houin, G., 1991. Simultaneous pharmacokinetic modeling of a drug and two metabolites: application to albendazole in sheep. Journal of Pharmacological Science, 80, 3–10

    CAS  Google Scholar 

  • Gokbulut, C., Nolan, A.M. and McKellar, Q.A., 2002. Pharmacokinetic disposition, faecal excretion and in vitro metabolism of oxibendazole following oral administration in horses. Research in Veterinary Science, 72, 11– 15

    Article  PubMed  CAS  Google Scholar 

  • Goudah, A., 2003. Aspects of the pharmacokinetics of albendazole sulphoxide in sheep. Veterinary Research Communications, 27, 555–566

    Article  PubMed  CAS  Google Scholar 

  • Hanafy, A., Langguth, P. and Spahn-Langguth, H., 2001. Pretreatment with potent P-glycoprotein ligands may increase intestinal secretion in rats. European Journal of Pharmacological Science, 12, 405–415

    Article  CAS  Google Scholar 

  • Hennessy, D.R., Sangster, N.C., Steel, J.W. and Collins, G.W., 1993a. Comparative pharmacokinetic behaviour of albendazole in sheep and goats. International Journal of Parasitoloji, 23, 321–325

    Article  CAS  Google Scholar 

  • Hennessy, D.R., Sangster, N.C., Steel, J.W. and Collins, G.W., 1993b. Comparative kinetic disposition of oxfendazole in sheep and goat before and during infection with Haemonchus contortus and Trichostrongylus colubriformis. Journal of Veterinary Pharmacology and Therapeutics, 16, 245–250

    CAS  Google Scholar 

  • Hennessy, D.R., Steel, J.W. and Prichard, R.K., 1993c. Biliary secretion and enterohepatic recycling of fenbendazole metabolites in sheep. Journal of Veterinary Pharmacology and Therapeutics, 16, 132–140

    CAS  Google Scholar 

  • Lacey, E., Brady, R.L., Prichard, R.K. and Watson, T.R., 1987. Comparison of inhibition of polymerisation of mammalian tubulin and helminth ooicidal activity by benzimidazole carbonates. Veterinary Parasitology, 23, 105–119

    Article  PubMed  CAS  Google Scholar 

  • Landoni, M.F., Soraci, A.L., Delatour, P. and Lees, P., 1997. Enantioselective behaviour of drugs used in domestic animals, a review. Journal of Veterinary Pharmacology and Therapeutics, 20, 1–16

    Article  PubMed  CAS  Google Scholar 

  • Lanusse, C.E. and Prichard, R.K., 1990. Pharmacokinetic behaviour of netobimin and its metabolites in sheep. Journal of Veterinary Pharmacology and Therapeutics, 13, 170–178

    PubMed  CAS  Google Scholar 

  • Lanusse, C.E. and Prichard, R.K., 1992. Effects of methimazole on the kinetics of netobimin metabolites in cattle. Xenobiotica, 22, 115–123

    Article  PubMed  CAS  Google Scholar 

  • Lanusse, C.E. and Prichard, R.K., 1993. Relationship between pharmacological properties and clinical efficacy of ruminant anthelmintics. Veterinary Parasitology, 49, 123–158

    Article  PubMed  CAS  Google Scholar 

  • Lanusse, C.E., Nare, B., Gascon, L.H. and Prichard, R.K., 1992. Metabolism of albendazole and albendazole sulphoxide by ruminal and intestinal fluids of sheep and cattle. Xenobiotica, 22, 419–426

    PubMed  CAS  Google Scholar 

  • Lanusse, C.E., Gascon, L.H., and Prichard, R.K., 1993. Gastrointestinal distribution of albendazole metabolites following netobimin administration to cattle: relationship with plasma disposition kinetics. Journal of Veterinary Pharmacology and Therapeutics, 16, 38–47

    PubMed  CAS  Google Scholar 

  • Marriner, S.E. and Bogan, J.A., 1980. Pharmacokinetics of albendazole in sheep. American Journal of Veterinary Research, 41, 483–491

    Google Scholar 

  • McKellar, Q.A., 1997. Ecotoxicology and residues of anthelmintic compounds. Veterinary Parasitology, 72, 413–435

    Article  PubMed  CAS  Google Scholar 

  • McKellar, Q.A. and Scott, E.W., 1990. The benzimidazole anthelmintic agents: a review. Journal of Veterinary Pharmacology and Therapeutics, 13, 223–247

    PubMed  CAS  Google Scholar 

  • McKellar, Q.A., Jackson, F., Coop, R.L. and Baggot, J.D., 1993. Plasma profiles of albendazole metabolites after administration of netobimin and albendazole in sheep, effects of parasitism and age. British Veterinary Journal, 149, 101–113

    Article  PubMed  CAS  Google Scholar 

  • McKellar, Q.A., Gokbulut, C., Muzandu, K. and Benchaoui, H., 2002. Fenbendazole pharmacokinetics, metabolism, and potentiation in horses. Drug Metabolism and Disposition. 30, 1230–1239

    Article  PubMed  CAS  Google Scholar 

  • Merino, G., Alvarez, A.I., Redondo, P.A., Garcia, J.L., Larrode, O.M. and Prieto, J.G., 1999. Bioavailability of albendazole sulphoxide after netobimin administration in sheep, effects of fenbendazole coadministration. Research in Veterinary Science, 66, 281–283

    Article  PubMed  CAS  Google Scholar 

  • Merino, G., Alvarez, A.I., Prieto, J.G. and Kim, R.B., 2002. The anthelmintic agent albendazole does not interact with P-glycoprotein. Drug Metabolism and Disposition, 30, 365–369

    Article  PubMed  CAS  Google Scholar 

  • Merino, G., Molina, A.J., Garcia, J.L., Pulido, M.M., Prieto, J.G. and Alvarez, A.I., 2003. Intestinal elimination of albendazole sulfoxide: pharmacokinetic effects of inhibitors. International Journal of Pharmacology, 263, 123–132

    Article  CAS  Google Scholar 

  • Morani, P., Buronfosse, T., Longin-Sauvageon, C., Delatour, P. and Benoit, E., 1995. Chiral sulphoxidation of albendazole by the flavin adenine dinucleotide-containing and cytochrome P450-dependent mono-oxygenases from rat liver microsomes. Drug Metabolism and Disposition, 23, 160–165

    Google Scholar 

  • Rabbaa, L., Dautrey, S., Colas-Linhart, N., Carbon, C. and Farinotti, R., 1996. Intestinal elimination of ofloxacin enantiomers in the rat: evidence of a carrier-mediated process. Antimicrobial Agents and Chemotherapy, 36, 2506–2511.

    Google Scholar 

  • Rawden, H.L., Kokwaro, G.O., Ward, S.A. and Edwards, G., 2000. Relative contribution of cytochromes P450 and flavin-containing monooxygenases to the metabolism of albendazole by human liver microsomes. British Journal of Clinical Pharmacology. 49, 313–322

    Article  PubMed  CAS  Google Scholar 

  • Redondo, P.A., Alvarez, A.I., Garcia, J.L., Larrode, O.M., Merino, G., and Prieto, J.G., 1999. resystemic metabolism of albendazole: experimental evidence of an efflux process of albendazole sulfoxide to intestinal lumen. Drug Metabolism and Disposition, 27, 736–740

    PubMed  CAS  Google Scholar 

  • Short, C.R., Barker, S.A. and Hsieh, L.C., 1987a. Disposition of fenbendazole in the goat. American Journal of Veterinary Research, 48, 811–815

    CAS  Google Scholar 

  • Short, C.R., Barker, S.A. and Hsieh, L.C., 1987b. Disposition of fenbendazole in cattle. American Journal of Veterinary Research, 48, 958–961

    CAS  Google Scholar 

  • Souhaili-El Amri, H., Mothe, O., Totos, M., Masson, C., Batt, A., Delatour, P. and Siest. G., 1988. Albendazole sulphonation by rat liver cytochrome P459c. Journal of Veterinary Pharmacology and Therapeutics, 246, 758–764

    CAS  Google Scholar 

  • Strong, L., Wall, R., Woolford, A. and Djeddour, D., 1996. The effect of faecally excreted ivermectin and fenbendazole on the insect colonisation of cattle dung following the oral administration of sustained-release boluses. Veterinary Parasitology, 62, 253–266

    Article  PubMed  CAS  Google Scholar 

  • Virkel, G., Lifschitz, A., Pis, A. and Lanusse, C., 2002. In vitro ruminal biotransformation of benzimidazole sulphoxide anthelmintics: enantioselective sulphoreduction in sheep and cattle. Journal of Veterinary Pharmacology and Therapeutics, 25, 15–13

    Article  PubMed  CAS  Google Scholar 

  • Virkel, G., Lifschitz, A., Pis, A., Sallovitz, J. and Lanusse, C., 2004a. Comparative hepatic and extrahepatic enantioselective sulfoxidation of albendazole and fenbendazole in sheep and cattle. Drug Metabolism and Disposition, 32, 536–544

    Article  CAS  Google Scholar 

  • Virkel, G., Lifschitz, A., Sallovitz, J., Inza, G. and Lanusse, C., 2004b. Effect of the ionophore antibiotic monensin on the ruminal biotransformation of benzimidazole anthelmintics. The Veterinary Journal, 167, 265–271

    Article  CAS  Google Scholar 

  • Wall, R. and Strong, L., 1987. Environmental consequences of treating cattle with the antiparasitic drug ivermectin. Nature, 324, 418–420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gokbulut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokbulut, C., Cirak, V.Y. & Senlik, B. Plasma Disposition and Faecal Excretion of Netobimin Metabolites and Enantiospecific Disposition of Albendazole Sulphoxide Produced in Ewes. Vet Res Commun 30, 791–805 (2006). https://doi.org/10.1007/s11259-006-3336-y

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-006-3336-y

Keywords

Navigation