Skip to main content
Log in

Effects of successional age, plot size, and tree size on the relationship between diversity and aboveground biomass in tropical dry forests

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Depending on the strength of the relationship between biodiversity and aboveground biomass (AGB), diversity loss could lead to varied declines in carbon storage, compromising the role of forests as carbon sink. This study assesses different factors affecting the diversity–AGB relationship, including small trees (diameter < 7.5 cm) and considering different diversity metrics (Hill numbers), plot sizes (80, 400 and 1000 m2) and successional age categories (8–22, 23–30 and > 60 years). The study compares these relationships across three types of tropical dry forests: deciduous, semi-deciduous, and semi-evergreen. Results reveal the highest deviance values in plots with large trees in the 400 m2 size (d2 = 40.4), decreasing when small trees were included (d2 = 25.8). Higher deviance values show the major contribution of large trees to diversity and AGB of 400 m2 plots, while lower deviance values indicate the high contribution of small trees to diversity but limited contribution to AGB. When analyzing only large trees, deviance decreased with the order of Hill numbers. However, incorporating small trees increased deviance for higher Hill numbers. This is because abundance of small and large trees together has a greater influence on AGB. The diversity–AGB relationship was more prevalent and stronger in the semideciduous forest, which had marked orographic and successional age variation. The strongest diversity–AGB effect occurred in early successional ages, weakening in older stages. Our results show that accuracy in estimating the diversity–AGB relationship varies with plant size, diversity parameters, plot size and forest type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used in this manuscript are available upon request to the corresponding author.

References

  • Acosta-Lugo E, Alonzo-Parra D, Andrade-Hernández M, Castillo-Tzab D, Chablé Santos J, Durán R, Espadas-Manrique C, Fernández-Stohanzlova I, Fraga J, Galicia E, González-Iturbe JA, Herrera-Silveira J, Sosa-Escalante J, Villalobos-Zapata GJ, Tun-Dzul F (2010) Plan de conservación de la eco-región Petenes-Celestun-Palmar. Universidad Autónoma de Campeche. Pronatura Península de Yucatán, Mérida

    Google Scholar 

  • Aguilar-Rodríguez S, Abundiz-Bonilla L, Barajas-Morales J (2001) Comparación de la gravedad específica y características anatómicas de la madera de dos comunidades vegetales en México. An Del Inst Biol Ser Bot 72:171–185

    Google Scholar 

  • Armenta-Montero S, Ellis EA, Ellis PW, Manson RH, López-Binnqüist C, Pérez JAV (2020) Carbon emissions from selective logging in the Southern Yucatan Peninsula, Mexico. Madera y Bosques 26:1–14

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, Silva NM, Nez RV (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Chang Biol 10:545–562

    Article  Google Scholar 

  • Bengtsson J, Engelhardt K, Giller P, Hobbie S, Lawrence D, Levine J, Vilá M, Wolters V (2002) Slippin’ and slidin’ between the scales : the scaling components of biodiversity- ecosystem functioning relations. In: Naeem S, Inchausti P, Loreau M (eds) Biodiversity and ecosystem functioning synthesis and perspectives. Oxford University Press, Oxford, pp 209–220

    Chapter  Google Scholar 

  • Boucher DH, Vandermeer JH, Granzow De La Cerda I, Mallona MA, Perfecto I, Zamora N (2001) Post-agriculture versus post-hurricane succession in southeastern Nicaraguan rain forest. Plant Ecol 156:131–137. https://doi.org/10.1023/A:1012672005360

    Article  Google Scholar 

  • Brown S (1997) Appendix 1—List of wood densities for tree species from tropical America, Africa, and Asia. Estimating biomass and biomass change of tropical forests: A primer. FAO For Pap 134

  • Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag 186:125–132. https://doi.org/10.1016/S0378-1127(03)00229-9

    Article  Google Scholar 

  • Duno de, Stefano R, Carnevali Fernández-Concha G, Ramírez Morillo IM, Tapia Muñoz JL, Can Itzá LL, Hernández-Aguilar Sy, Embray T (2010 ) Flora de la Península de Yucatán. Centro de Investigación Científica de Yucatán. Yucatán, México. https://www.cicy.mx/sitios/flora%20digital/index.php. Accessed May 2024

  • Caughlin TT, Rifai SW, Graves SJ, Asner GP, Bohlman SA (2016) Integrating LiDAR-derived tree height and Landsat satellite reflectance to estimate forest regrowth in a tropical agricultural landscape. Remote Sens Ecol Conserv 2:190–203. https://doi.org/10.1002/rse2.33

    Article  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell R, Ellison KMA (2014a) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014b) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. https://doi.org/10.1890/13-0133.1

    Article  Google Scholar 

  • Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP (2003) Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol 91:240–252

    Article  Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Trans R Soc Lond B 359:409–420

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. https://doi.org/10.1007/s00442-005-0100-x

    Article  CAS  PubMed  Google Scholar 

  • Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao H, Cao M, Cárdenas D, Chang L-W, Chiang J-M, Chuyong G, Condit R, Dattaraja HS, Davies S, Duque A, Fletcher C, Gunatilleke N, Gunatilleke S, Hao Z, Harrison RD, Howe R, Hsieh C-F, Hubbell SP, Itoh A, Kenfack D, Kiratiprayoon S, Larson AJ, Lian J, Lin D, Liu H, Lutz JA, Ma K, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Razman SM, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, Punchi-Manage R, Romero-Saltos H, Sang W, Schurman J, Su S-H, Sukumar R, Sun I-F, Suresh HS, Tan S, Thomas D, Thomas S, Thompson J, Valencia R, Wolf A, Yap S, Ye W, Yuan Z, Zimmerman JK (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224. https://doi.org/10.1111/1365-2745.12132

    Article  Google Scholar 

  • CONAFOR (2020) Inventario Nacional Forestal y de Suelos, Informe de Resultados 2009–2014. https://snmf.cnf.gob.mx/datos-del-inventario/. Accessed May 2024

  • de Torales Ayala DJ (2019) Cambios históricos en el paisaje costero de Sisal, Yucatán: estudio comparativo de tres periodos: Puerto de Altura (1807–1871), Puerto de Cabotaje (1871–1931) y Periodo Ejidal (1931–1990). Centro de Investigación y de Estudios Avanzados del Iinstituto Politecnico Nacional, Mexico

    Google Scholar 

  • Di Marco M, Watson JEM, Currie DJ, Possingham HP, Venter O (2018) The extent and predictability of the biodiversity–carbon correlation. Ecol Lett 21:365–375. https://doi.org/10.1111/ele.12903

    Article  PubMed  Google Scholar 

  • Dupuy JM, Hernández-Stefanoni JL, Hernández-Juárez RA, Tetetla-Rangel E, López-Martínez JO, Leyequién-Abarca E, Tun-Dzul FJ, May-Pat F (2012) Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica 44:151–162. https://doi.org/10.1111/j.1744-7429.2011.00783.x

    Article  Google Scholar 

  • Ellis EA, Romero Montero JA, Hernández Gómez IU (2017) Deforestation processes in the state of Quintana Roo, Mexico: the role of land use and community forestry. Trop Conserv Sci. https://doi.org/10.1177/1940082917697259

    Article  Google Scholar 

  • Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. For Ecol Manage 90:59–87. https://doi.org/10.1016/S0378-1127(96)03840-6

    Article  Google Scholar 

  • Flores-Guido JS (2010) Comunidades vegetales terrestres. In: Durán-García R, Méndez-González ME (eds) Biodiversidad y Desarrollo Humano en Yucatán. Centro de Investigación Cientifica de Yucatán, Mexico, pp 125–129

    Google Scholar 

  • Frangi JL, Lugo AE (1985) Ecosystem dynamics of a subtropical floodplain forest. Ecol Monogr 55:351–369

    Article  Google Scholar 

  • Genung MA, Fox J, Winfree R (2020) Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob Ecol Biogeogr 29:1531–1541. https://doi.org/10.1111/geb.13137

    Article  Google Scholar 

  • Gonzalez A, Germain M, Srivastava DS, Dee LE, Filotas E (2020) Scaling-up biodiversity-ecosystem functioning research. Ecol Lett 23:757–776. https://doi.org/10.1111/ele.13456

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Q (2003) Temporal species richness-biomass relationships along successional gradients. J Veg Sci 14:121–128. https://doi.org/10.1111/j.1654-1103.2003.tb02134.x

    Article  Google Scholar 

  • Guyot J (2011) Estimation du stock de carbone dans la végétation des zones humides de la Péninsule du Yucatan. Memoire de fin d’etudes. (Tesis de licenciatura no publicada). AgroParis Tech-El Colegio de la Frontera Sur. San cristobal de las Casas. México, pp 110

  • Hernández-stefanoni JL, Dupuy-Rada JM, Johnson KD, Birdsey R (2014) Improving species diversity and biomass estimates of tropical dry forest using airborne lidar. Remote Sens 6:4741–4763

    Article  Google Scholar 

  • Hernández-Stefanoni JL, Reyes-Palomeque G, Castillo-Santiago MÁ, George-Chacón SP, Huechacona-Ruiz AH, Tun-Dzul F, Rondon-Rivera D, Dupuy JM (2018) Effects of sample plot size and GPS location errors on aboveground biomass estimates from LiDAR in tropical dry forests. Remote Sens 10:1–15. https://doi.org/10.3390/rs10101586

    Article  Google Scholar 

  • Hernández-Stefanoni JL, Castillo-Santiago MÁ, Mas JF, Wheeler CE, Andres-Mauricio J, Tun-Dzul F, Dupuy JM (2020) Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data. Carbon Balance Manag 15:1–17. https://doi.org/10.1186/s13021-020-00151-6

    Article  CAS  Google Scholar 

  • Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, Filstrup CT, Harpole WS, Hodapp D, Larsen S, Lewandowska AM, Seabloom EW, Van de Waal DB, Ryabov AB (2017) Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J Appl Ecol 55:169–184. https://doi.org/10.1111/1365-2664.12959

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7:1451–1456. https://doi.org/10.1111/2041-210X.12613

    Article  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  PubMed  Google Scholar 

  • Jaramillo VJ, Kauffman JB, Rentería-Rodríguez L, Cummings DL, Ellingson LJ (2003) Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems 6:609–629. https://doi.org/10.1007/s10021-002-0195-4

    Article  CAS  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439

    Article  PubMed  Google Scholar 

  • Jost L, González-Oreja JA (2012) Midiendo la diversidad biológica: más allá del índice de Shannon. Acta Zoológica Lilloana 56:3–14

    Google Scholar 

  • Keith H, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci 106:11635–11640. https://doi.org/10.1073/pnas.0901970106

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91(2):386–398. https://doi.org/10.1890/08-1449.1

    Article  PubMed  Google Scholar 

  • Lecina-Diaz J, Alvarez A, Regos A, Drapeau P, Paquette A, Messier C, Retana J (2018) The positive carbon stocks–biodiversity relationship in forests: co-occurrence and drivers across five subclimates. Ecol Appl 28:1481–1493. https://doi.org/10.1002/eap.1749

    Article  PubMed  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. https://doi.org/10.1038/35083573

    Article  CAS  PubMed  Google Scholar 

  • Mascorro VS, Coops NC, Kurz WA, Olguín M (2016) Attributing changes in land cover using independent disturbance datasets: a case study of the Yucatan Peninsula, Mexico. Reg Environ Chang 16:213–228. https://doi.org/10.1007/s10113-014-0739-0

    Article  Google Scholar 

  • Memiaghe HR, Lutz JA, Korte L, Alonso A, Kenfack D (2016) Ecological importance of small-diameter trees to the structure, diversity and biomass of a tropical evergreen forest at Rabi, Gabon. PLoS ONE 11:1–15. https://doi.org/10.1371/journal.pone.0154988

    Article  CAS  Google Scholar 

  • Mensah S, du Toit B, Seifert T (2018) Diversity–biomass relationship across forest layers: implications for niche complementarity and selection effects. Oecologia 187:783–795. https://doi.org/10.1007/s00442-018-4144-0

    Article  PubMed  Google Scholar 

  • Miranda F, Hernández XE (1963) Los tipos de vegetacion de Mexico y su clasificacion. Bot Sci. https://doi.org/10.17129/botsci.1084

    Article  Google Scholar 

  • Nogueira EM, Fearnside PM, Nelson BW, França MB (2007) Wood density in forests of Brazil’s “arc of deforestation”: implications for biomass and flux of carbon from land-use change in Amazonia. For Ecol Manage 248:119–135. https://doi.org/10.1016/j.foreco.2007.04.047

    Article  Google Scholar 

  • Nogueira EM, Fearnside PM, Nelson BW (2008) Normalization of wood density in biomass estimates of Amazon forests. For Ecol Manage 256:990–996. https://doi.org/10.1016/j.foreco.2008.06.001

    Article  Google Scholar 

  • Pan Y, Birsdsey RA, Fang J, Houghton RA, Kauppi PE, Kurz WA, Phillips OL, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez FJ, Peña-Claros M (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24:1314–1328. https://doi.org/10.1111/geb.12364

    Article  Google Scholar 

  • Poorter L, Craven D, Jakovac CC, van der Sande MT, Amissah L, Bongers F, Chazdon RL, Farrior CE, Kambach S, Meave JA, Muñoz R (2021) Multidimensional tropical forest recovery. Science 80(374):1370–1376. https://doi.org/10.1126/science.abh3629

    Article  CAS  Google Scholar 

  • Portillo-Quintero C, Sanchez-Azofeifa A, Calvo-Alvarado J, Quesada do Espirito Santo MM (2015) The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: lessons learned and opportunities for its sustainable management. Reg Environ Chang 15:1039–1049. https://doi.org/10.1007/s10113-014-0689-6

    Article  Google Scholar 

  • Ramírez Ramírez G, Dupuy Rada JM, Ramírez y Avilés L, Solorio Sánchez FJ (2017) Evaluación de ecuaciones alométricas de biomasa epigea en una selva mediana subcaducifolia de Yucatán. Madera Bosques 23:163–179. https://doi.org/10.21829/myb.2017.2321452

    Article  Google Scholar 

  • Read L, Lawrence D (2003) Recovery of biomass following shifting cultivation in dry tropical forests of the Yucatan. Ecol Appl 13:85–97. https://doi.org/10.1890/1051-0761(2003)013[0085:ROBFSC]2.0.CO;2

    Article  Google Scholar 

  • Rejou-Mechain M, Tanguy A, Piponiot C, Chave J, Herault B (2017) BIOMASS: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol. https://doi.org/10.1111/2041-210X.12753

    Article  Google Scholar 

  • Reyes-García C, Andrade JL, Simá JL, Us-Santamaría R, Jackson PC (2012) Sapwood to heartwood ratio affects whole-tree water use in dry forest legume and non-legume trees. Trees 26:1317–1330

    Article  Google Scholar 

  • Romero FMB, Jacovine LAG, Ribeiro SC, Neto JAF, Ferrante L, da Rocha SJSS, Torres CMME, de Morais Junior VTM, de Oliveira GR, Velasquez SIS, Vidal E, Staudhammer CL, Fearnside PM (2020) Stocks of carbon in logs and timber products from forest management in the Southwestern Amazon. Forests 11:1–20. https://doi.org/10.3390/f11101113

    Article  Google Scholar 

  • Sanaphre-Villanueva L, Dupuy JM, Andrade JL, Reyes-García C, Jackson PC, Paz H (2017) Patterns of plant functional variation and specialization along secondary succession and topography in a tropical dry forest. Environ Res Lett. https://doi.org/10.1088/1748-9326/aa6baa

    Article  Google Scholar 

  • Sheil D, Bongers F (2020) Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences. For Ecosyst 7:6

    Article  Google Scholar 

  • Spaak JW, Baert JM, Baird DJ, Eisenhauer N, Maltby L, Pomati F, Radchuk V, Rohr JR, Van den Brink PJ, De Laender F (2017) Shifts of community composition and population density substantially affect ecosystem function despite invariant richness. Ecol Lett 20:1315–1324. https://doi.org/10.1111/ele.12828

    Article  PubMed  Google Scholar 

  • Stan K, Sanchez-Azofeifa A (2019) Tropical dry forest diversity, climatic response, and resilience in a changing climate. Forests. https://doi.org/10.3390/f10050443

    Article  Google Scholar 

  • Steur G, Verburg RW, Wassen MJ, Verweij PA (2020) Shedding light on relationships between plant diversity and tropical forest ecosystem services across spatial scales and plot sizes. Ecosyst Serv 43:101107. https://doi.org/10.1016/j.ecoser.2020.101107

    Article  Google Scholar 

  • Sullivan MJP, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK, Chave J, Cuni-Sanchez A, Hubau W, Lopez-Gonzalez G, Miles L, Monteagudo-Mendoza A, Sonké B, Sunderland T, Ter Steege H, White LJT, Affum-Baffoe K, Aiba SI, De Almeida EC, De Oliveira EA, Alvarez-Loayza P, Dávila EÁ, Andrade A, Aragão LEOC, Ashton PS, Aymard GA, Baker TR, Balinga M, Banin LF, Baraloto C, Bastin JF, Berry NJ, Bogaert J, Bonal D, Bongers F, Brienen R, Camargo JLC, Cerón C, Moscoso VC, Chezeaux E, Clark CJ, Pacheco ÁC, Comiskey JA, Valverde FC, Coronado ENH, Dargie G, Davies SJ, De Canniere C, Djuikouo MN, Doucet JL, Erwin TL, Espejo JS, Ewango CEN, Fauset S, Feldpausch TR, Herrera R, Gilpin M, Gloor E, Hall JS, Harris DJ, Hart TB, Kartawinata K, Kho LK, Kitayama K, Laurance SGW, Laurance WF, Leal ME, Lovejoy T, Lovett JC, Lukasu FM, Makana JR, Malhi Y, Maracahipes L, Marimon BS, Junior BHM, Marshall AR, Morandi PS, Mukendi JT, Mukinzi J, Nilus R, Vargas PN, Camacho NCP, Pardo G, Peña-Claros M, Pétronelli P, Pickavance GC, Poulsen AD, Poulsen JR, Primack RB, Priyadi H, Quesada CA, Reitsma J, Réjou-Méchain M, Restrepo Z, Rutishauser E, Salim KA, Salomão RP, Samsoedin I, Sheil D, Sierra R, Silveira M, Slik JWF, Steel L, Taedoumg H, Tan S, Terborgh JW, Thomas SC, Toledo M, Umunay PM, Gamarra LV, Vieira ICG, Vos VA, Wang O, Willcock S, Zemagho L (2017) Diversity and carbon storage across the tropical forest biome. Sci Rep 7:1–12. https://doi.org/10.1038/srep39102

    Article  CAS  Google Scholar 

  • Tanjina Hasnat GN, Kamal Hossain M (2019) Global overview of tropical dry forests. pp 1–23

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed May 2024

  • Urquiza-Haas T, Dolman PM, Peres CA (2007) Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: effects of forest disturbance. For Ecol Manage 247:80–90. https://doi.org/10.1016/j.foreco.2007.04.015

    Article  Google Scholar 

  • van der Plas F (2019) Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev 94:1220–1245. https://doi.org/10.1111/brv.12499

    Article  PubMed  Google Scholar 

  • van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378

    Article  PubMed  Google Scholar 

  • Vincent JB, Henning B, Saulei S, Sosanika G, Weiblen GD (2015) Forest carbon in lowland Papua New Guinea: local variation and the importance of small trees. Austral Ecol 40:151–159. https://doi.org/10.1111/aec.12187

    Article  PubMed  Google Scholar 

  • Wang LQ, Ali A (2021) Climate regulates the functional traits—aboveground biomass relationships at a community-level in forests: a global meta-analysis. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143238

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasof S, Lenoir J, Hattab T, Jamoneau A, Gallet-Moron E, Ampoorter E, Saguez R, Bennsadek L, Bertrand R, Valdès A, Verheyen K, Decocq G (2018) Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey. J Veg Sci 29:521–531. https://doi.org/10.1111/jvs.12624

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer, Heidelberg, pp 189–201

    Google Scholar 

  • Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol Lett 18:626–635. https://doi.org/10.1111/ele.12424

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the ejidos of Xkobehnaltún, Xuul, Yaxhachén and Felipe Carrillo Puerto for allowing us to work in their lands and for their assistance with field work. James Callaghan and Reserva Biocultural Kaxil Kiuic provided logistic support. We thank María Elena Sánchez-Salazar for translating the manuscript from Spanish to English.

Funding

The study was financially supported by CICY and Ecometrica LTD and the United Kingdom Space Agency as part of the project Forests 2020. This study is part of the first author’s PhD dissertation which was supported by a grant from CONACYT.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, Eric Antonio Gamboa Blanco and Jose Luis Hernandez Stefanoni. Manuscript drafting, Eric Antonio Gamboa Blanco, Jose Luis Hernandez Stefanoni, and Juan Manuel Dupuy. Manuscript review and edition, Eric Antonio Gamboa Blanco, Jose Luis Hernandez Stefanoni, Juan Manuel Dupuy, Carlos A. Portillo-Quintero and Trevor Caughlin. Fund acquisition, Jose Luis Hernandez Stefanoni.

Corresponding author

Correspondence to José Luis Hernández-Stefanoni.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Norris Muth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 141 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamboa-Blanco, E.A., Dupuy, J.M., Portillo-Quintero, C.A. et al. Effects of successional age, plot size, and tree size on the relationship between diversity and aboveground biomass in tropical dry forests. Plant Ecol (2024). https://doi.org/10.1007/s11258-024-01435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11258-024-01435-4

Keywords

Navigation