Skip to main content
Log in

Acquisitive to conservative resource use strategy and increased site-specific trait variance contribute to Sophora moorcroftiana dominance along an altitudinal gradient in Qinghai–Tibet Plateau

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Exploring plant trait variance within a species that is naturally distributed along an environmental gradient is key to understanding plant acclimation strategies. Here, we investigated plant trait variance of Sophora moorcroftiana in the Qinghai–Tibet Plateau along an altitudinal gradient. The results showed that plant traits changed from acquisitive to conservative resource use strategy from low to high altitudes. Site-specific trait variance increased along with altitude increase and was strongly correlated with temperature variables, especially closely correlated with minimum temperature in the coldest month. The decreased trends of acquisitive traits and the increase of site-specific trait variance were coordinated with increased S. moorcroftiana dominance in high altitudes. The findings provided insight that the combination of plant resource use strategy and site-specific trait variance contributes to S. moorcroftiana dominance in response to divergent environmental conditions along altitudinal gradients. The strong correlation between plant trait variance and the minimum temperature in the coldest month suggested that it should pay more attention to the critical role extreme temperature played on trait variance which was often neglected in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aerts R, Chapin FSI (2000) The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns. Adv Ecol Res 30:1–67

    CAS  Google Scholar 

  • Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS (2018) Mechanism of stomatal closure in plants exposed to drought and cold stress. Survival strategies in extreme cold and desiccation. Adv Exp Med Biol 1081:215–232

    Article  CAS  PubMed  Google Scholar 

  • Akram H, Pasaribu N, Siregar ES (2019) Tree species diversity, richness and similarity in disturbed and undisturbed forest of Ketambe Research Station, Southeast Aceh regency. IOP Conf Ser Earth Environ Sci 305:012094

    Article  Google Scholar 

  • Blanquart F, Kaltz O, Nuismer SL, Gandon S (2013) A practical guide to measuring local adaptation. Ecol Lett 16:1195–1205

    Article  PubMed  Google Scholar 

  • Bricca A, Carranza ML, Varricchione M, Cutini M, Stanisci A (2021) Exploring plant functional diversity and redundancy of Mediterranean high-mountain habitats in the Apennines. Diversity-Basel 13:466

    Article  Google Scholar 

  • Buckley TN, Roberts DW (2006) How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth? Tree Physiol 26:145–157

    Article  PubMed  Google Scholar 

  • Camarero JJ, Gutierrez E (2017) Wood density of silver fir reflects drought and cold stress across climatic and biogeographic gradients. Dendrochronologia 45:101–112

    Article  Google Scholar 

  • Cheng SM, Qiong L, Lu F, Yonezawa T, Yin GQ, Song ZP et al (2017) Phylogeography of Sophora moorcroftiana supports Wu’s hypothesis on the origin of Tibetan alpine flora. J Hered 108:405–414

    Article  PubMed  Google Scholar 

  • Chinese Academy of Sciences (1985) Flora of Tibet. China Science Publishing & Media Ltd, Beijing

    Google Scholar 

  • Chown SL, Gaston KJ, Robinson D (2004) Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct Ecol 18:159–167

    Article  Google Scholar 

  • Cornwell WK, Bhaskar R, Sack L, Cordell S, Lunch CK (2007) Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct Ecol 21:1063–1071

    Article  Google Scholar 

  • Cui GS, Zhang L, Shen W, Liu XS, Wang YT (2017) Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China. Chin J Plant Ecol 41:53–61

    Google Scholar 

  • Cusser S, Helms J, Bahlai CA, Haddad NM (2021) How long do population level field experiments need to be? Utilising data from the 40-year-old LTER network. Ecol Lett 24:1103–1111

    Article  PubMed  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431

    Article  PubMed  Google Scholar 

  • Erofeeva EA (2021) Plant hormesis and Shelford’s tolerance law curve. J Forest Res 32:1789–1802

    Article  CAS  Google Scholar 

  • Everitt B (1998) The Cambridge dictionary of statistics. Cambridge University Press, Cambridge

    Google Scholar 

  • Feng, X.Y., Lin, P.F. & Zhao, W.Z. (2022). The physiological constraints of alpine treeline in Qilian Mountains. Forest Ecol Manag, 503.

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Francis EJ, Muller-Landau HC, Wright SJ, Visser MD, Iida Y, Fletcher C et al (2017) Quantifying the role of wood density in explaining interspecific variation in growth of tropical trees. Global Ecol Biogeogr 26:1078–1087

    Article  Google Scholar 

  • Fu YR, Yao WJ, Li SK, Li HE (2016) Improvement of seed germination and in vitro propagation of a multipurpose plateau shrub species Sophora moorcroftiana. Pak J Bot 48:1439–1445

    CAS  Google Scholar 

  • Gianoli E (2004) Plasticity of traits and correlations in two populations of Convolvulus arvensis (Convolvulaceae) differing in environmental heterogeneity. Int J Plant Sci 165:825–832

    Article  Google Scholar 

  • Gimeno TE, Pias B, Lemos JP, Valladares F (2009) Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Tree Physiol 29:87–98

    Article  PubMed  Google Scholar 

  • Graae BJ, De Frenne P, Kolb A, Brunet J, Chabrerie O, Verheyen K et al (2012) On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121:3–19

    Article  Google Scholar 

  • Grytnes JA, Kapfer J, Jurasinski G, Birks HH, Henriksen H, Klanderud K et al (2014) Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol Biogeogr 23:876–884

    Article  Google Scholar 

  • Hajihashemil S, Noedoostl F, Geuns JMC, Djalovic L, Siddique KHM (2018) Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front Plant Sci. https://doi.org/10.3389/fpls.2018.014

    Article  Google Scholar 

  • Halbritter AH, Fior S, Keller I, Billeter R, Edwards PJ, Holderegger R et al (2018) Trait differentiation and adaptation of plants along elevation gradients. J Evol Biol 31:784–800

    Article  PubMed  Google Scholar 

  • Henn JJ, Buzzard V, Enquist BJ, Halbritter AH, Klanderuds K, Maitner BS et al (2018) Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01548

    Article  PubMed  PubMed Central  Google Scholar 

  • Heschel MS, Sultan SE, Glover S, Sloan D (2004) Population differentiation and plastic responses to drought stress in the generalist annual Polygonum persicaria. Int J Plant Sci 165:817–824

    Article  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2022) Climate change 2022: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jump AS, Matyas C, Penuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  PubMed  Google Scholar 

  • Kent M (2011) Vegetation description and data analysis: a practical approach, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Kim E, Donohue K (2013) Local adaptation and plasticity of Erysimum capitatum to altitude: its implications for responses to climate change. J Ecol 101:796–805

    Article  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Korner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Körner C (2016) Plant adaptation to cold climates. F1000Research 5:2769

    Article  Google Scholar 

  • Kraft NJB, Godoy O, Levine JM (2015) Plant functional traits and the multidimensional nature of species coexistence. Proc Natl Acad Sci USA 112:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M et al (2019) Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol 222:768–784

    Article  CAS  PubMed  Google Scholar 

  • Lapenis A, Shvidenko A, Shepaschenko D, Nilsson S, Aiyyer A (2005) Acclimation of Russian forests to recent changes in climate. Global Change Biol 11:2090–2102

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lazaro-Nogal A, Matesanz S, Godoy A, Perez-Trautman F, Gianoli E, Valladares F (2015) Environmental heterogeneity leads to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into climate change responses. J Ecol 103:338–350

    Article  Google Scholar 

  • Lee J, Wong DW (2001) Statistical analysis with ArcView GIS. Wiley, New York

    Google Scholar 

  • Li W (2019) Analysis on dynamic changes of sandy desertification land in the middle and upper reaches of Yarlung Zangbo river in Tibet. MA thesis, Tibet University

  • Lin L, Ye YH, Luo J, Chen S, Wang JH (2014) Seed germination of different provenances of Sophora moorcroftiana, an endemic species to the Qinghai–Tibetan Plateau. For Res 24:508–513

    Google Scholar 

  • Liu ZM, Zhao AM, Kang XY, Zhou SL, Lopez-Pujol J (2006) Genetic diversity, population structure, and conservation of Sophora moorcroftiana (Fabaceae), a shrub endemic to the Tibetan Plateau. Plant Biol 8:81–92

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Ma WJ, Wang JH, Pubu CR, Xiang Y (2017) Drought-resistance of Sophora moorcroftiana from different population from leaf anatomical structure. Bull Botan Res 37:325–333

    Google Scholar 

  • Liu H, Gleason SM, Hao GY, Hua L, He PC, Goldstein G et al (2019) Hydraulic traits are coordinated with maximum plant height at the global scale. Sci Adv. https://doi.org/10.1126/sciadv.aav1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yi F, Yang GJ, Wang YT, Pubu C, He RH et al (2020) Geographic population genetic structure and diversity of Sophora moorcroftiana based on genotyping-by-sequencing (GBS). PeerJ 8:e960

    Article  Google Scholar 

  • Liu ZG, Dong N, Zhang HX, Zhao M, Ren TT, Liu CC et al (2021) Divergent long- and short-term responses to environmental gradients in specific leaf area of grassland species. Ecol Indic 130:108058

    Article  Google Scholar 

  • Ludwig F, Rosenthal DM, Johnston JA, Kane N, Gross BL, Lexer C et al (2004) Selection on leaf ecophysiological traits in a desert hybrid Helianthus species and early-generation hybrids. Evolution 58:2682–2692

    PubMed  PubMed Central  Google Scholar 

  • Maharjan SK, Sterck FJ, Dhakal BP, Makri M, Poorter L (2021) Functional traits shape tree species distribution in the Himalayas. J Ecol 109:3818–3834

    Article  Google Scholar 

  • Mao LF, Chen SB, Zhang JL, Zhou GS (2018) Altitudinal patterns of maximum plant height on the Tibetan Plateau. J Plant Ecol 11:85–91

    Google Scholar 

  • Matesanz S, Ramirez-Valiente JA (2019) A review and meta-analysis of intraspecific differences in phenotypic plasticity: implications to forecast plant responses to climate change. Global Ecol Biogeogr 28:1682–1694

    Article  Google Scholar 

  • Matias L, Godoy O, Gomez-Aparicio L, Perez-Ramos IM (2018) An experimental extreme drought reduces the likelihood of species to coexist despite increasing intransitivity in competitive networks. J Ecol 106:826–837

    Article  Google Scholar 

  • Mediavilla S, Garcia-Ciudad A, Garcia-Criado B, Escudero A (2008) Testing the correlations between leaf life span and leaf structural reinforcement in 13 species of European Mediterranean woody plants. Funct Ecol 22:787–793

    Article  Google Scholar 

  • Mencuccini M, Rosa T, Rowland L, Choat B, Cornelissen H, Jansen S et al (2019) Leaf economics and plant hydraulics drive leaf : wood area ratios. New Phytol 224:1544–1556

    Article  PubMed  Google Scholar 

  • Midolo G, De Frenne P, Holzel N, Wellstein C (2019) Global patterns of intraspecific leaf trait responses to elevation. Global Change Biol 25:2485–2498

    Article  Google Scholar 

  • Missanjo E, Matsumura J (2016) Wood density and mechanical properties of Pinus kesiya Royle ex Gordon in Malawi. Forests 7:135

    Article  Google Scholar 

  • Onoda Y, Anten NP (2011) Challenges to understand plant responses to wind. Plant Signal Behav 6:1057–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Perez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012) Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol 100:1315–1327

    Article  Google Scholar 

  • Perez-Ramos IM, Matias L, Gomez-Aparicio L, Godoy O (2019) Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat Commun. https://doi.org/10.1038/s41467-019-10453-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfennigwerth AA, Bailey JK, Schweitzer JA (2017) Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. Aob Plants. https://doi.org/10.1093/aobpla/plx027

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin HJ, Jiao L, Zhou Y, Wu JJ, Che XC (2022) Elevation affects the ecological stoichiometry of Qinghai spruce in the Qilian Mountains of northwest China. Front Plant Sci. https://doi.org/10.3389/fpls.2022

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rathore N, Thakur D, Chawla A (2018) Seasonal variations coupled with elevation gradient drives significant changes in eco-physiological and biogeochemical traits of a high altitude evergreen broadleaf shrub, Rhododendron anthopogon. Plant Physiol Biochem 132:708–719

    Article  CAS  PubMed  Google Scholar 

  • Read QD, Moorhead LC, Swenson NG, Bailey JK, Sanders NJ (2014) Convergent effects of elevation on functional leaf traits within and among species. Funct Ecol 28:37–45

    Article  Google Scholar 

  • Rolhauser AG, Pucheta E (2017) Directional, stabilizing, and disruptive trait selection as alternative mechanisms for plant community assembly. Ecology 98:668–677

    Article  PubMed  Google Scholar 

  • Togashi HF, Prentice IC, Evans BJ, Forrester DI, Drake P, Feikema P et al (2015) Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees. Ecol Evol 5:1263–1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Topaloglu E, Ay N, Altun L, Serdar B (2016) Effect of altitude and aspect on various wood properties of Oriental beech (Fagus orientalis Lipsky) wood. Turk J Agric for 40:397–406

    Article  Google Scholar 

  • Turunen M, Latola K (2005) UV-B radiation and acclimation in timberline plants. Environ Pollut 137:390–403

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Gianoli E, Gomez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  PubMed  Google Scholar 

  • van der Sande MT, Poorter L, Schnitzer SA, Engelbrecht BMJ, Markesteijn L (2019) The hydraulic efficiency-safety trade-off differs between lianas and trees. Ecology. https://doi.org/10.1002/ecy.2666

    Article  PubMed  Google Scholar 

  • van Kleunen M, Fischer M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166:49–60

    Article  PubMed  Google Scholar 

  • Wadgymar SM, Ogilvie JE, Inouye DW, Weis AE, Anderson JT (2018) Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment. New Phytol 218:517–529

    Article  PubMed  Google Scholar 

  • Wainwright CE, HilleRisLambers J, Lai HR, Loy X, Mayfield MM (2019) Distinct responses of niche and fitness differences to water availability underlie variable coexistence outcomes in semi-arid annual plant communities. J Ecol 107:293–306

    Article  Google Scholar 

  • Xie JB, Wang ZY, Li Y (2022) Stomatal opening ratio mediates trait coordinating network adaptation to environmental gradients. New Phytol 235:907–922

    Article  PubMed  Google Scholar 

  • Xin FM, Liu JM, Chang C, Wang YT, Jia LM (2021) Evaluating the influence of climate change on Sophora moorcroftiana (Benth.) Baker habitat distribution on the Tibetan Plateau using maximum entropy model. Forests 12:1230

    Article  Google Scholar 

  • Yuan RY, Dongzhi ZM, Guo W, Zhen P, Liu ZM, Huang S et al (2022) Hepatoprotective effect of Sophora moorcroftiana (Benth.) Benth. Ex baker seeds in vivo and in vitro. Drug Chem Toxicol 45:2535–2544

    Article  CAS  PubMed  Google Scholar 

  • Zhao WZ, Zhang ZH, Li QY (2007) Growth and reproduction of Sophora moorcroftiana responding to altitude and sand burial in the middle Tibet. Environ Geol 53:11–17

    Article  CAS  Google Scholar 

  • Zhao Y, Duan S, Zheng Y, Nan J, Mi S, Zhao Y et al (2019) Seedling growth and photosynthetic characteristics of different. J Zhejiang Univ (agric Life Sci) 45:164–174

    Google Scholar 

Download references

Acknowledgements

The authors thank the support from the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSW-DQC040), and the National Natural Science Foundation of China (Grant No. 32171876/52172300).

Funding

Funding was provided by Key Research Program of Frontier Sciences, CAS (Grant no. QYZDJ-SSW-DQC040) and National Natural Science Foundation of China (Grant nos. 52172300 and 32171876).

Author information

Authors and Affiliations

Authors

Contributions

ZW and FX designed the field experiment. FX, ZL, and WC conducted the field survey and measured the plant traits. FX, ZH, YQ, and WC prepared the figures and tables of the manuscript. FX and ZW wrote and reviewed the manuscript.

Corresponding author

Correspondence to Wenzhi Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Wenzhi Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2710 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Zhong, L., Wang, C. et al. Acquisitive to conservative resource use strategy and increased site-specific trait variance contribute to Sophora moorcroftiana dominance along an altitudinal gradient in Qinghai–Tibet Plateau. Plant Ecol 224, 1075–1087 (2023). https://doi.org/10.1007/s11258-023-01362-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-023-01362-w

Keywords

Navigation