Skip to main content
Log in

Drought and herbivory as modulators of intraspecific differentiation in seedlings of a mountain tree

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In mountain ecosystems, plant regeneration might be constrained by multiple factors that change along elevation gradients and promote traits differentiation. Drought is a strong filter for seedling establishment that might be modified by herbivory co-occurrence. Populations of the tree Maytenus boaria support lower soil moisture and higher herbivory pressure at low elevations than at mid-elevations in Córdoba Mountains, central Argentina. Consequently, we expect that populations from the low elevation perform better in response to drought than populations from mid-elevations and that herbivory modifies these responses. Seedlings from the two elevation origins were exposed to two levels of simulated drought and herbivory in a greenhouse experiment. The selected elevations corresponded to the lowest edge of species distribution (with driest soils and highest herbivory pressure) and the central mid-elevation. Performance-related variables, biomass allocation patterns and several morphological and physiological traits were measured. Mortality patterns and most of morphological and physiological variables showed that drought is a stressful factor at the regeneration stage of M. boaria. The drought effect was increased by simulated herbivory in some variables (LMF, RM:SM and SPAD). In most variables, origin did not influence seedling performance, suggesting that drought response of seedlings is independent of populations’ elevation. Only leaf number and water potential were in line with our predictions and showed an origin response to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA (2002) Herbivory and maternal effects: mechanisms and consequences of transgenerational induced plant resistance. Ecology 83(12):3408–3415

    Article  Google Scholar 

  • Anderegg WR, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady AK, McDowell N, Pan Y, Raffa K, Sala A, Shaw JD, Stephenson NL, Tague C, Zeppel M (2015) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208(3):674–683

    Article  PubMed  Google Scholar 

  • Barton KE, Hanley ME (2013) Seedling–herbivore interactions: insights into plant defence and regeneration patterns. Ann Bot 112(4):643–650

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton KE (2016) Low tolerance to simulated herbivory in Hawaiian seedlings despite induced changes in photosynthesis and biomass allocation. Ann Bot 117(6):1053–1062

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton KE, Shiels AB (2020) Additive and non-additive responses of seedlings to simulated herbivory and drought. Biotropica 52(6):1217–1228

    Article  Google Scholar 

  • Bhaskar R, Ackerly DD (2006) Ecological relevance of minimum seasonal water potentials. Physiol Plant 127(3):353–359

    Article  CAS  Google Scholar 

  • Chambers LE, Barnard P, Poloczanska ES, Hobday AJ, Keatley MR, Allsopp N, Underhill LG (2017) Southern hemisphere biodiversity and global change: data gaps and strategies. Austral Ecol 42(1):20–30

    Article  Google Scholar 

  • Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92

    Article  Google Scholar 

  • Giorgis MA, Cingolani AM, Teich I, Renison D, Hensen I (2010) Do Polylepis australis trees tolerate herbivory? Seasonal patterns of shoot growth and its consumption by livestock. Plant Ecol 207:307–319

    Article  Google Scholar 

  • Connolly J, Wayne P (1996) Asymmetric competition between plant species. Oecologia 108(2):311–320

    Article  CAS  PubMed  Google Scholar 

  • Cotado A, Munné-Bosch S (2020) Distribution, trade-offs and drought vulnerability of a high-mountain Pyrenean endemic plant species Saxifraga Longifolia. Glob Ecol Conserv 22:e00916

    Article  Google Scholar 

  • Engelbrecht BM, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447(7140):80–82

    Article  CAS  PubMed  Google Scholar 

  • Ferenc V, Merkert C, Zilles F, Sheppard CS (2021) Native and alien species suffer from late arrival, while negative effects of multiple alien species on natives vary. Oecologia 197(1):271–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Fotovat R, Valizadeh M, Toorchi M (2007) Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J Food Agric Environ 5(3–4):225

    CAS  Google Scholar 

  • García CL (2013) Utilización de información satelital y terrestre para el manejo integrado del recurso hídrico de una cuenca serrana en la Provincia de Córdoba, Argentina. PhD Theses, Universidad Nacional de Córdoba press. Córdoba: http://hdl.handle.net/11086/1659

  • Gassmann AJ (2004) Effect of photosynthetic efficiency and water availability on tolerance of leaf removal in Amaranthus hybridus. J Ecol 92:882–892

    Article  CAS  Google Scholar 

  • Gianoli E, González-Teuber M (2005) Environmental heterogeneity and population differentiation in plasticity to drought in Convolvulus chilensis (Convolvulaceae). Evol Ecol 19(6):603–613

    Article  Google Scholar 

  • Gurevitch J, Teeri JA, Wood AM (1986) Differentiation among populations of Sedum wrightii (Crassulaceae) in response to limited water availability: water relations, CO2 assimilation, growth and survivorship. Oecologia 70(2):198–204

    Article  PubMed  Google Scholar 

  • Halbritter AH, Fior S, Keller I, Billeter R, Edwards PJ, Holderegger R, Karrenberg S, Pluess AR, Widmer A, Alexander JM (2018) Trait differentiation and adaptation of plants along elevation gradients. J Evol Biol 31(6):784–800

    Article  PubMed  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12(10):1040–1049

    Article  PubMed  Google Scholar 

  • He WM, Sun ZK (2016) Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees. Sci Rep 6(1):1–7

    Google Scholar 

  • IPCC (2014) Cambio climático 2014: Impactos, adaptación y vulnerabilidad. En: Resúmenes, preguntas frecuentes y recuadros multicapítulos. Contribución del Grupo de trabajo II al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.). Organización Meteorológica Mundial, Ginebra

    Google Scholar 

  • Keefover-Ring K, Rubert-Nason KF, Bennett AE, Lindroth RL (2016) Growth and chemical responses of trembling aspen to simulated browsing and ungulate saliva. J Plant Ecol 9(4):474–484

    Article  Google Scholar 

  • Khurana EKTA, Singh JS (2001) Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environ Conserv 28(1):39–52

    Article  Google Scholar 

  • Kitajima K, Fenner M (2000) Ecology of seedling regeneration. In: Fenner M (Ed), Seeds: the ecology of regeneration in plant communities (2nd edn), Wallingford, pp 331–359

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer Science & Business Media, Basel

    Book  Google Scholar 

  • Kuemmerle T, Altrichter M, Baldi G, Cabido M, Camino M, Cuellar E, Cuellar RL, Decarre J, Díaz S, Gasparri I, Gavier-Pizarro G, Ginzburg R, Giordano AJ, Grau HR, Jobbágy E, Leynaud G, Macchi L, Mastrangelo M, Matteucci SD, Noss A, Paruelo J, Piquer-Rodríguez M, Romero-Muñoz A, Semper-Pascual A, Thompson J, Torrella S, Torres R, Volante JN, Yanosky A, Zak M (2017) Forest conservation: remember Gran Chaco. Science 355(6324):465–465

    Article  CAS  PubMed  Google Scholar 

  • Larter M, Pfautsch S, Domec JC, Trueba S, Nagalingum N, Delzon S (2017) Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. New Phytol 215(1):97–112

    Article  PubMed  Google Scholar 

  • Liu C, Liu Y, Guo K, Fan D, Li G, Zheng Y, Yu L, Yang R (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71(2):174–183

    Article  CAS  Google Scholar 

  • López-Goldar X, Agrawal AA (2021) Ecological interactions, environmental gradients, and gene flow in local adaptation. Trends Plant Sci 26(8):796–809

    Article  PubMed  Google Scholar 

  • Lorca EA, Ferreras AE, Funes G (2019) Seed size and seedling ontogenetic stage as modulators of damage tolerance after simulated herbivory in a woody exotic species. Aust J Bot 67(2):159–164

    Article  Google Scholar 

  • Marcora P, Hensen I, Renison D, Seltmann P, Wesche K (2008) The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Divers Distrib 14(4):630–636

    Article  Google Scholar 

  • Marcora PI, Renison D, País-Bosch AI, Cabido MR, Tecco PA (2013) The effect of altitude and grazing on seedling establishment of woody species in central Argentina. For Ecol Manage 291:300–307

    Article  Google Scholar 

  • Marcora PI, Tecco PA, Zeballos SR, Hensen I (2017) Influence of altitude on local adaptation in upland tree species from central Argentina. Plant Biol 19(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • McNaughton SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40(3):329–336

    Article  Google Scholar 

  • Moreira X, Petry WK, Mooney KA, Rasmann S, Abdala-Roberts L (2018) Elevational gradients in plant defences and insect herbivory: recent advances in the field and prospects for future research. Ecography 41(9):1485–1496

    Article  Google Scholar 

  • Ramos CS (2018) Interacciones biológicas y patrones espaciales de diversidad: plantas, artrópodos herbívoros y herbivoría en gradientes altitudinales. PhD Theses, Universidad de Buenos Aires press. Buenos Aires: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n6480_Ramos.pdf

  • RStudio Version 1.1.463 (2009–2018) RStudio, Inc. Mozilla/5.0 (Windows NT 6.1) AppleWebKit/538.1 (KHTML, like Gecko) rstudio Safari/538.1 Qt/5.4.1. http://www.rstudio.com

  • Rodríguez-Castañeda G, Dyer LA, Brehm G, Connahs H, Forkner RE, Walla TR (2010) Tropical forests are not flat: how mountains affect herbivore diversity. Ecol Lett 13(11):1348–1357

    Article  PubMed  Google Scholar 

  • Rooke T (2004) Growth responses of a woody species to clipping and goat saliva. Afr J Ecol 41(4):324–328

    Article  Google Scholar 

  • Sánchez-Gómez D, Zavala MA, Valladares F (2008) Functional traits and plasticity linked to seedlings’ performance under shade and drought in Mediterranean woody species. Ann for Sci 65(3):311

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT (1965) Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148(3668):339–346

    Article  CAS  PubMed  Google Scholar 

  • Stevens MT, Kruger EL, Lindroth RL (2008) Variation in tolerance to herbivory is mediated by differences in biomass allocation in aspen. Funct Ecol 22(1):40–47

    Article  Google Scholar 

  • Soliani C, Mattera M, Marchelli P, Azpilicueta M, Dalla-Salda G (2021) Different drought-adaptive capacity of a native Patagonian tree species (Nothofagus pumilio) resulting from local adaptation. Eur J Res 140(5):1147–1161

    Article  Google Scholar 

  • Taeger S, Sparks TH, Menzel A (2015) Effects of temperature and drought manipulations on seedlings of Scots pine provenances. Plant Biol 17(2):361–372

    Article  CAS  PubMed  Google Scholar 

  • Tecco PA, Pais-Bosch AI, Funes G, Marcora PI, Zeballos SR, Cabido M, Urcelay C (2016) Mountain invasions on the way: Are there climatic constraints for the expansion of alien woody species along an elevation gradient in Argentina? J Plant Ecol 9(4):380–392

    Article  Google Scholar 

  • Teich I, Cingolani AM, Renison D, Hensen I, Giorgis MA (2005) Do domestic herbivores retard Polylepis australis Bitt: woodland recovery in the mountains of Córdoba, Argentina? For Ecol Manage 219(2–3):229–241

    Article  Google Scholar 

  • Thomson VP, Cunningham SA, Ball MC, Nicotra AB (2003) Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia 134(2):167–175

    Article  PubMed  Google Scholar 

  • Varela SA, Gyenge JE, Fernández ME, Schlichter TM (2010) Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. Trees 24:443–453. https://doi.org/10.1007/s00468-010-0412-2

    Article  Google Scholar 

  • Wright SJ, Machado JL, Mulkey SS, Smith AP (1992) Drought acclimation among tropical forest shrubs (Psychotria, Rubiaceae). Oecologia 89(4):457–463

    Article  PubMed  Google Scholar 

  • Yin C, Peng Y, Zang R, Zhu Y, Li C (2005) Adaptive responses of Populus kangdingensis to drought stress. Physiol Plant 123(4):445–451

    Article  CAS  Google Scholar 

  • Zuur A, Ieno EN, Meesters E (2009) A Beginner’s Guide to R. Springer Science & Business Media, Newburgh

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of Quebrada del Condorito National Park for providing permission for seed collection. We also wish to thank two anonymous reviewers for useful comments on the manuscript and to Jorgelina Brasca who assisted with the English editing.

Funding

This work was supported by CONICET, FONCyT (PICT-2018-04158), SECyT (Universidad Nacional de Córdoba-UNC-), Deuthsche Forschungsgemeinchaft (Grant/ Award Number: HE3041/21-1).

Author information

Authors and Affiliations

Authors

Contributions

PM and SZ contributed to study conception and design. Material preparation and data collection were performed by SZ, GA and PM. The analysis data were performed by AF, SZ and PM. The first draft of the manuscript was written by PM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. R. Zeballos.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Robert Griffin-Nolan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcora, P.I., Zeballos, S.R., Ferreras, A.E. et al. Drought and herbivory as modulators of intraspecific differentiation in seedlings of a mountain tree. Plant Ecol 224, 895–903 (2023). https://doi.org/10.1007/s11258-023-01345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-023-01345-x

Keywords

Navigation