Abstract
The lack of seeds represents one of the highest difficulties to overcome for the ecological restoration of areas that have been deforested. This study evaluates the effectiveness of artificial perches in increasing the abundance and species richness of bird-dispersed seeds and the similarity of seed rain composition of deforested areas with and without artificial perches in relation to woodland remnants that serve as seeds source. We also tested for differences in seed abundance and species richness with different origins (native or non-native) as well as different type of habits (woody and non-woody). The experiment took place in two sites of the Espinal ecoregion, Argentina. We found that in deforested areas, perches increased seed abundance and species richness in the seed rain in comparison with deforested areas without artificial perches. The species composition under artificial perches was similar to the seed rain dispersed in the woodland. However, there was a decrease in the abundance and richness of native species under artificial perches, probably due to behavioral differences between opportunistic and obligate frugivorous. Seed of trees and shrubs species that can act as natural perches and nurses were well represented in the seed rain under artificial perches. We recommend using artificial perches in deforested areas with potential for recovery because it is an efficient technique to promote the entry of birds and increase seed rain, preserving features of the original environment. In places where native and non-native species show different fructification peaks, artificial perches could be used in certain periods of the year.





Data availability
All the data are available in appendix of supplementary information.
Code availability
Not applicable.
References
Abraham de Noir F, Bravo S (2014) Frutos de leñosas nativas de Argentina, 1a edn. Universidad Nacional de Santiago del Estero—Facultad de Ciencias Forestales, Santiago del Estero
Alzugaray C, Carnevale N (2009) Libro de semillas de especies leñosas autóctonas, 1a edn.
Arnqvist G (2020) Mixed models offer no freedom from degrees of freedom. Trends Ecol Evol 35:329–335
Arturi M (2006) Situación ambiental en la Ecorregión Espinal. La Situac Ambient Argentin 2005:241–260
Barberis IM, Batista WB, Pire EF, Lewis JP, León RJC (2002) Woody population distribution and environmental heterogeneity in a Chaco forest, Argentina. J Veg Sci 13:607–614. https://doi.org/10.1111/j.1654-1103.2002.tb02088.x
Barquez RM, Díaz MM (2020) Nueva guía de los murciélagos de Argentina, 1st edn. Yerba Buena
Bennun L, Dranzoa C, Pomeroy D (1996) The forest birds of Kenya and Uganda. J East Afr Nat Hist 85:23–48. https://doi.org/10.2982/0012-8317(1996)85[23:tfboka]2.0.co;2
Bevilacqua Marcuzzo S, Ganade G, Machado Araujo M, Brião Muniz MF (2013) Comparação da eficácia de técnicas de nucleação para restauração de área degradada no Sul do Brasil. Floresta 43:39–48
Bomfim JDA, Guimarães PR Jr, Peres CA, Carvalho G, Cazetta E (2018) Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography (cop) 41:1–11. https://doi.org/10.1111/ecog.03592
Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical-theoretical approach, 2nd edn. Springer-Verlag, Berlin
Cabido M, Zeballos SR, Zak M, Carranza ML, Giorgis MA, Cantero JJ, Acosta ATR (2018) Native woody vegetation in central Argentina: classification of Chaco and Espinal forests. Appl Veg Sci 21:298–311. https://doi.org/10.1111/avsc.12369
Cabral AC, De Miguel JM, Rescia AJ, Schmitz MF, Pineda FD (2003) Shrub encroachment in Argentinean savannas. J Veg Sci 14:145–152
Cabrera AL (1976) Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería, Tomo II, Fascículo 1. Buenos Aires: ACME
Carlo TA, Morales JM (2016) Generalist birds promote tropical forest regeneration and increase plant diversity via rare-biased seed dispersal. Ecology 97:1819–1831. https://doi.org/10.1890/15-2147.1
Carlo TA, Aukema JE, Morales JM (2007) Plant–frugivore interactions as spatially explicit networks: integrating frugivore foraging with fruiting plant spatial patterns. In: Dennis A (ed) Seed dispersal: Theory and its application in a changing world. CABI, UK, pp 369–390
Carlo TA, García D, Martinez D, Gleditsch J, Morales JM (2013) Where do seeds go when they go far? Distance and directionality of avian seed dispersal in heterogeneous landscapes. Ecology 94:301–307
Corbin JD, Holl KD (2012) Applied nucleation as a forest restoration strategy. For Ecol Manage 265:37–46
Corlett RT, Hau BCH (2000) Seed dispersal and forest restoration. For Restor Wildl Conserv 317–325
Cottee-Jones HEW, Matthews TJ, Bregman TP, Barua M, Tamuly J, Whittaker RJ (2015) Are protected areas required to maintain functional diversity in human-modified landscapes? PLoS ONE 10:1–22. https://doi.org/10.1371/journal.pone.0123952
Crawley MJ (2007) The R book. Wiley, Chichester, UK
Cubiña A, Aide TM (2001) The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture. Biotropica 33:260–267
Da Silveira NS, Niebuhr BBS, Muylaert RDL, Ribeiro MC, Pizo MA (2016) Effects of land cover on the movement of frugivorous birds in a heterogeneous landscape. PLoS ONE 11:1–19. https://doi.org/10.1371/journal.pone.0156688
Debussche M, Isenniann P (1994) Bird-dispersed seed rain and seedling establishment in patchy Mediterranean vegetation. Oikos 3:414–426
Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43:209–218. https://doi.org/10.1111/j.1365-2664.2006.01146.x
Elgar AT, Freebody K, Pohlman CL, Shoo LP, Catterall CP (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Front Plant Sci 5:1–10. https://doi.org/10.3389/fpls.2014.00200
Ferri R, Ceballos M, Vischi N, Heredia E, Oggero A (2009) Banco de semillas de un relicto de Espinal (Córdoba, Argentina). Iheringia - Ser Bot 64:93–100
Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452
Fournier D, Skaug H, Ancheta J, Ianelli J, Magnusson A, Maunder M, Nielsen A, Sibert J (2012) AD model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249
Fox J, Weisberg S (2019) An {R} Companion to Applied Regression, Third Edition. Thousand Oaks , California. Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
García D, Martínez D (2012) Species richness matters for the quality of ecosystem services: a test using seed dispersal by frugivorous birds. Proc R Soc B Biol Sci 279:3106–3113. https://doi.org/10.1098/rspb.2012.0175
García D, Zamora R, Amico GC (2010) Birds as suppliers of seed dispersal in temperate ecosystems: conservation guidelines from real-world landscapes. Conserv Biol 24:1070–1079. https://doi.org/10.1111/j.1523-1739.2009.01440.x
Gleditsch J, Carlo TA (2011) Fruit quantity of invasive shrubs predicts the abundance of common native avian frugivores in central Pennsylvania. Divers Distrib 17:244–253
González S, Cadenazzi M (2015) Recolonización natural por bosque ribereño en margen izquierda del embalse de Salto Grande: identificación de especies pioneras. Agrocienc - Sitio En Repar 19:1–13. https://doi.org/10.2477/vol19iss1pp1-13
Gosper CR (2004) Fruit characteristics of invasive bitou bush, Chrysanthemoides monilifera (Asteraceae), and a comparison with co-occurring native plant species. Aust J Bot 52:223–230
Graham LLB, Page SE (2012) Artificial bird perches for the regeneration of degraded tropical peat swamp forest: a restoration tool with limited potential. Restor Ecol 20:631–637. https://doi.org/10.1111/j.1526-100X.2011.00805.x
Green R, Dennis A (2007) Management implications and conservation. In: Dennis A, Schupp EW, Green R, Westcott D (eds) Seed dispersal: theory and its application in a changing world. CABI, UK
Griscom HP, Ashton MS (2011) Restoration of dry tropical forests in Central America: a review of pattern and process. For Ecol Manage 261:1564–1579. https://doi.org/10.1016/j.foreco.2010.08.027
Guevara S, Meave J, Moreno-Casasola P, Laborde J (1992) Floristic composition and structure of vegetation under isolated trees in neotropical pastures. J Veg Sci 3:655–664. https://doi.org/10.2307/3235833
Guidetti BY, Amico GC, Dardanelli S, Rodriguez-Cabal MA (2016) Artificial perches promote vegetation restoration. Plant Ecol 217:935–942. https://doi.org/10.1007/s11258-016-0619-4
Guidetti BY (2020) Servicios ecosistémicos brindados por aves frugívoras dispersoras de semillas en bosques con ganadería extensiva del Espinal de la provincia de Entre Ríos. PhD Thesis, Universidad Nacional del Nordeste (Argentina).
Guimarães PR, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE. https://doi.org/10.1371/journal.pone.0001745
Hardwick K, Healey JR, Elliott S, Blakesley D (2004) Research needs for restoring seasonal tropical forests in Thailand: accelerated natural regeneration. New for 27:285–302. https://doi.org/10.1023/B:NEFO.0000022228.08887.d2
Hartig F (2021) DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.4. https://CRAN.R-project.org/package=DHARMa
Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7. https://doi.org/10.1111/j.1466-822X.2006.00212.x
Holl KD (1998) Do bird perching structures elevate seed rain and seedling establishment in abandoned tropical pasture? Restor Ecol 6:253–261. https://doi.org/10.1046/j.1526-100X.1998.00638.x
Holl KD (2013) Restoring Tropical Forest. Nat Educ Knowl 4:4
Holl KD, Loik ME, Lin EHV, Samuels IA (2000) Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor Ecol 8:339–349
Huebner CD, Tobin PC (2006) Invasibility of mature and 15-year-old deciduous forests by exotic plants. Plant Ecol 186:57–68. https://doi.org/10.1007/s11258-006-9112-9
Johnson BG, Zuleta GA (2013) Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agric Ecosyst Environ 181:31–40. https://doi.org/10.1016/j.agee.2013.09.002
Jones HP, Schmitz OJ (2009) Rapid recovery of damaged ecosystems. PLoS ONE. https://doi.org/10.1371/journal.pone.0005653
Karlin MS, Cora A, Bernasconi Salazar JR, Arnulphi S (2020) Mid-term dynamics of the natural revegetation of forest communities in the Center of Córdoba (Argentina). AgriScientia 37:1–13. https://doi.org/10.31047/1668.298x.v37.n1.28068
Karubian J, Browne L, Bosque C, Carlo T, Galetti M, Loiselle BA, Blake JG, Cabrera D, Durães R, Labecca FM, Holbrook KM, Holland R, Jetz W, Kümmeth F, Olivo J, Ottewell K, Papadakis G, Rivas G, Steiger S, Voirin B, Wikelski M (2012) Seed dispersal by neotropical birds: emerging patterns and underlying processes. Ornitol Neotrop 23:9–24
Keller HA, Velazco SJE, Krauczuk E (2016) Regeneración de plantas leñosas bajo arbustos aislados en un sector de los Esteros del Iberá, Corrientes, Argentina, implicancias etnoecológicas. Bonplandia 25:103–114
Lewis P, Collantes MB (1973) El Espinal Periestépico. Cienc e Investig 29:360–377
Logan M (2010) Biostatistical design and analysis using R: a practical guide. Wiley, Hoboken
Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, van Bentham K, Bolker B, Brooks M (2016) glmmTMB: Generalized Linear Mixed Models using Template Model Builder
Martínez-Garza C, Howe HF (2003) Restoring tropical diversity: beating the time tax on species loss. J Appl Ecol 40:423–429. https://doi.org/10.1046/j.1365-2664.2003.00819.x
Mastrangelo ME (2014) Conservation on the frontier: understanding and influencing how cattle production impacts avian diversity in the Dry Chaco Forest of Argentina. Victoria University of Wellington, Kelburn
Matteucci SD (2012) Ecorregión Espinal. In: Morello J, Matteucci SD, Rodríguez AF, Silva M (eds) Ecorregiones y complejos ecosistémicos argentinos. González, Orientacion Grafica Editora SRL, p 719
McCay TS, McCay DH, Czajka JL (2009) Deposition of exotic bird-dispersed seeds into three habitats of a fragmented landscape in the northeastern United States. Plant Ecol 203:59–67. https://doi.org/10.1007/s11258-008-9509-8
McDonnell MJ, Stiles EW (1983) The structural complexity of old field vegetation and the recruitment of bird dispersed plant species. Oecologia 56:109–116
Nepstad DC, Uhl C, Pereira CA, da Silva JMC (1996) A comparative study of tree establishment in abandoned pasture and mature forest of eastern Amazonia. Oikos 76:25–39. https://doi.org/10.2307/3545745
Oksanen AJ, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O´Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2017) Community Ecology Package
Peirone-Cappri L, Torres R, Estrabou C (2020) Reforestar en áreas agrícola-ganaderas: un estudio de caso evaluando el desempeño de dos especies nativas del Espinal. Bol Soc Argent Bot 55:605–618
Pejchar L, Pringle RM, Ranganathan J, Zook JR, Duran G, Oviedo F, Daily GC (2008) Birds as agents of seed dispersal in a human-dominated landscape in southern Costa Rica. Biol Conserv 141:536–544. https://doi.org/10.1016/j.biocon.2007.11.008
Pizo MA, dos Santos BTP (2010) Frugivory, post-feeding flights of frugivorous birds and the movement of seeds in a Brazilian fragmented landscape. Biotropica 43:335–342. https://doi.org/10.1111/j.1744-7429.2010.00695.x
Ponce AM, Grilli G, Galetto L (2012) Frugivoría y remoción de frutos ornitócoros en fragmentos del bosque chaqueño de Córdoba (Argentina). Bosque 33:33–41. https://doi.org/10.4067/S0717-92002012000100004
Prather CM, Huynh A, Pennings SC (2017) Woody structure facilitates invasion of woody plants by providing perches for birds. Ecol Evol 7:8032–8039. https://doi.org/10.1002/ece3.3314
Purificação KN, Pascotto MC, Pedroni F, Pereira JMN, Lima NA (2014) Interactions between frugivorous birds and plants in savanna and forest formations of the Cerrado. Biota Neotrop. https://doi.org/10.1590/1676-06032014006814
R Development Core Team (2018) R: a language and environment for statistical computing
Reid JL, Holl KD (2013) Arrival ≠ Survival. Restor Ecol 21:153–155. https://doi.org/10.1111/j.1526-100X.2012.00922.x
Reis A, Campanhã Bechara F, Tres DR (2010) Nucleation in tropical ecological restoration. Sci Agric 67:129–251
Rocha-Santos L, Benchimol M, Mayfield MM, Faria D, Pessoa MS, Talora DC, Mariano-Neto E, Cazetta E (2017) Functional decay in tree community within tropical fragmented landscapes: effects of landscape-scale forest cover. PLoS ONE 12:1–18. https://doi.org/10.1371/journal.pone.0175545
Russell, L (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.0. https://CRAN.R-project.org/package=emmeans
Scarpa LJ (2013) Fenología reproductiva de plantas leñosas, nativas y exóticas, e interacciones con visitantes florales en un área protegida en el Espinal de Entre Ríos. Universidad Nacional del Litoral, Argentina
Schlawin JR, Zahawi RA (2008) ‘ Nucleating ’ succession in recovering neotropical wet forests: the legacy of remnant trees. J Veg Sci 19:485–492. https://doi.org/10.3170/2008-8-18387
Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer MH, Böhning-Gaese K (2011a) Specialization and interaction strength in a tropical plant—frugivore network differ among forest strata. Ecology 92:26–36
Schleuning M, Farwig N, Peters MK, Bergsdorf T, Bleher B, Brandl R, Dalitz H, Fischer G, Freund W, Gikungu MW, Hagen M, Garcia FH, Kagezi GH, Kaib M, Kraemer M, Lung T, Naumann CM, Schaab G, Templin M, Uster D, Wägele JW, Böhning-Gaese K (2011b) Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PLoS ONE 6:e27785. https://doi.org/10.1371/journal.pone.0027785
Schorn LA, Krieger A, Canestraro Nadolny M, Bergamo Fenilli TA (2010) Avaliação de técnicas para indução da regeneração natural em área de preservação permanente sob uso anterior do solo com Pinus elliottii. Floresta 40:281–294
Sebastian-Gonzalez E (2017) Drivers of species’ role in avian seed-dispersal mutualistic networks. J Anim Ecol 86:878–887
Shiels AB, Walker LR (2003) Bird perches increase forest seeds on Puerto Rican landslides. Restor Ecol 11:457–465. https://doi.org/10.1046/j.1526-100X.2003.rec0269.x
Shoo LP, Catterall CP (2013) Stimulating natural regeneration of Tropical Forest on degraded land: approaches, outcomes, and information gaps. Restor Ecol 21:670–677. https://doi.org/10.1111/rec.12048
Sione SMJ, Ledesma SG, Rosenberger LJ, Wilson MG, Sabattini RA (2016) Banco de semillas del suelo en un área de bosques nativos sujeta a cambio en el uso de la tierra (Entre Ríos, Argentina). Rev Fave, Ciencias Agrar 15:1–17
Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker BM (2013) Generalized Linear Mixed Models using AD Model Builder
Slocum MG (2001) How tree species differ as recruitment foci in a tropical pasture. Ecology 82:2547–2559
Tálamo A, Barchuk AH, Garibaldi LA, Trucco CE, Cardozo S, Mohr F (2015) Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina). Oecologia 178:847–854. https://doi.org/10.1007/s00442-015-3269-7
Toh I, Gillespie M, Lamb D (1999) The role of isolated trees in facilitating tree seedling recruitment at a degraded Sub-Tropical rainforest site. Restor Ecol 7:288–297. https://doi.org/10.1046/j.1526-100X.1999.72022.x
Tres DR, Reis A (2009) Técnicas nucleadoras na restauração de floresta ribeirinha em área de floresta ombrófila mista, sul do Brasil. Rev Biotemas 22:59–71
White E, Vivian-Smith G (2011) Contagious dispersal of seeds of synchronously fruiting species beneath invasive and native fleshy-fruited trees. Austral Ecol 36:195–202
WWF International (2005) Forest restoration in landscapes. Springer Science, New York
Yarranton G, Morrison R (1974) Spatial dynamics of a primary succession: nucleation. Br Ecol Soc 62:417–428
Zanini L, Ganade G (2005) Restoration of Araucaria forest: the role of perches, pioneer vegetation, and soil fertility. Restor Ecol 13:507–514. https://doi.org/10.1111/j.1526-100X.2005.00063.x
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science, New York
Zwiener VP, Cardoso FCG, Padial AA, Marques MCM (2014) Disentangling the effects of facilitation on restoration of the Atlantic Forest. Basic Appl Ecol 15:34–41. https://doi.org/10.1016/j.baae.2013.11.005
Acknowledgements
The permit for field research was granted by Dirección General de Recursos Naturales Entre Ríos (DGRN), in Authorization N°. 003/15 (File N°. 1.733.195). We thank director Alfredo Berduc from Parque General San Martín, and Valeria Tiropolis, Viviana Fussi and Alba Flores from Reserva de Uso Múltiple Escuela J.B. Alberdi. Special thanks to Rubén G. who assisted us for perches construction and during field work. We also thank Claudia Alzugaray, Cesar Massi, Geraldina Richard and Berenice Schneider for helping in some seed species identification. We thank Romina Vidal-Russell for English revision of the manuscript.
Funding
For this work Brenda Guidetti received financial support provided by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; the Instituto Nacional Tecnología Agropecuaria (INTA), Argentina and Idea Wild Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
BYG, SD and GCA contributed in manuscript conceptualization and experiment methodology, BYG and FMLM did the field work and data curation, BYG performed the formal analysis, validation, data visualization, writing and original draft preparation, SD and GCA worked on the project administration, the supervision, review and editing. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflicts of interest
We declare and confirm that the present manuscript has been approved by all co-authors as well as by the responsible authorities. We also declare no conflicts of interests.
Additional information
Communicated by Elizabeth Pringle.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Guidetti, B.Y., Dardanelli, S., Miño, F.M.L. et al. Artificial perches for birds in deforested areas favour a seed rain similar to woodland remnants. Plant Ecol 223, 1261–1274 (2022). https://doi.org/10.1007/s11258-022-01272-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11258-022-01272-3