Skip to main content

Advertisement

Log in

Artificial perches for birds in deforested areas favour a seed rain similar to woodland remnants

Plant Ecology Aims and scope Submit manuscript

Abstract

The lack of seeds represents one of the highest difficulties to overcome for the ecological restoration of areas that have been deforested. This study evaluates the effectiveness of artificial perches in increasing the abundance and species richness of bird-dispersed seeds and the similarity of seed rain composition of deforested areas with and without artificial perches in relation to woodland remnants that serve as seeds source. We also tested for differences in seed abundance and species richness with different origins (native or non-native) as well as different type of habits (woody and non-woody). The experiment took place in two sites of the Espinal ecoregion, Argentina. We found that in deforested areas, perches increased seed abundance and species richness in the seed rain in comparison with deforested areas without artificial perches. The species composition under artificial perches was similar to the seed rain dispersed in the woodland. However, there was a decrease in the abundance and richness of native species under artificial perches, probably due to behavioral differences between opportunistic and obligate frugivorous. Seed of trees and shrubs species that can act as natural perches and nurses were well represented in the seed rain under artificial perches. We recommend using artificial perches in deforested areas with potential for recovery because it is an efficient technique to promote the entry of birds and increase seed rain, preserving features of the original environment. In places where native and non-native species show different fructification peaks, artificial perches could be used in certain periods of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All the data are available in appendix of supplementary information.

Code availability

Not applicable.

References

  • Abraham de Noir F, Bravo S (2014) Frutos de leñosas nativas de Argentina, 1a edn. Universidad Nacional de Santiago del Estero—Facultad de Ciencias Forestales, Santiago del Estero

    Google Scholar 

  • Alzugaray C, Carnevale N (2009) Libro de semillas de especies leñosas autóctonas, 1a edn.

  • Arnqvist G (2020) Mixed models offer no freedom from degrees of freedom. Trends Ecol Evol 35:329–335

    Article  PubMed  Google Scholar 

  • Arturi M (2006) Situación ambiental en la Ecorregión Espinal. La Situac Ambient Argentin 2005:241–260

    Google Scholar 

  • Barberis IM, Batista WB, Pire EF, Lewis JP, León RJC (2002) Woody population distribution and environmental heterogeneity in a Chaco forest, Argentina. J Veg Sci 13:607–614. https://doi.org/10.1111/j.1654-1103.2002.tb02088.x

    Article  Google Scholar 

  • Barquez RM, Díaz MM (2020) Nueva guía de los murciélagos de Argentina, 1st edn. Yerba Buena

  • Bennun L, Dranzoa C, Pomeroy D (1996) The forest birds of Kenya and Uganda. J East Afr Nat Hist 85:23–48. https://doi.org/10.2982/0012-8317(1996)85[23:tfboka]2.0.co;2

    Article  Google Scholar 

  • Bevilacqua Marcuzzo S, Ganade G, Machado Araujo M, Brião Muniz MF (2013) Comparação da eficácia de técnicas de nucleação para restauração de área degradada no Sul do Brasil. Floresta 43:39–48

    Article  Google Scholar 

  • Bomfim JDA, Guimarães PR Jr, Peres CA, Carvalho G, Cazetta E (2018) Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography (cop) 41:1–11. https://doi.org/10.1111/ecog.03592

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical-theoretical approach, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  • Cabido M, Zeballos SR, Zak M, Carranza ML, Giorgis MA, Cantero JJ, Acosta ATR (2018) Native woody vegetation in central Argentina: classification of Chaco and Espinal forests. Appl Veg Sci 21:298–311. https://doi.org/10.1111/avsc.12369

    Article  Google Scholar 

  • Cabral AC, De Miguel JM, Rescia AJ, Schmitz MF, Pineda FD (2003) Shrub encroachment in Argentinean savannas. J Veg Sci 14:145–152

    Article  Google Scholar 

  • Cabrera AL (1976) Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería, Tomo II, Fascículo 1. Buenos Aires: ACME

  • Carlo TA, Morales JM (2016) Generalist birds promote tropical forest regeneration and increase plant diversity via rare-biased seed dispersal. Ecology 97:1819–1831. https://doi.org/10.1890/15-2147.1

    Article  PubMed  Google Scholar 

  • Carlo TA, Aukema JE, Morales JM (2007) Plant–frugivore interactions as spatially explicit networks: integrating frugivore foraging with fruiting plant spatial patterns. In: Dennis A (ed) Seed dispersal: Theory and its application in a changing world. CABI, UK, pp 369–390

    Chapter  Google Scholar 

  • Carlo TA, García D, Martinez D, Gleditsch J, Morales JM (2013) Where do seeds go when they go far? Distance and directionality of avian seed dispersal in heterogeneous landscapes. Ecology 94:301–307

    Article  PubMed  Google Scholar 

  • Corbin JD, Holl KD (2012) Applied nucleation as a forest restoration strategy. For Ecol Manage 265:37–46

    Article  Google Scholar 

  • Corlett RT, Hau BCH (2000) Seed dispersal and forest restoration. For Restor Wildl Conserv 317–325

  • Cottee-Jones HEW, Matthews TJ, Bregman TP, Barua M, Tamuly J, Whittaker RJ (2015) Are protected areas required to maintain functional diversity in human-modified landscapes? PLoS ONE 10:1–22. https://doi.org/10.1371/journal.pone.0123952

    Article  CAS  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester, UK

    Book  Google Scholar 

  • Cubiña A, Aide TM (2001) The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture. Biotropica 33:260–267

    Article  Google Scholar 

  • Da Silveira NS, Niebuhr BBS, Muylaert RDL, Ribeiro MC, Pizo MA (2016) Effects of land cover on the movement of frugivorous birds in a heterogeneous landscape. PLoS ONE 11:1–19. https://doi.org/10.1371/journal.pone.0156688

    Article  CAS  Google Scholar 

  • Debussche M, Isenniann P (1994) Bird-dispersed seed rain and seedling establishment in patchy Mediterranean vegetation. Oikos 3:414–426

    Article  Google Scholar 

  • Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43:209–218. https://doi.org/10.1111/j.1365-2664.2006.01146.x

    Article  Google Scholar 

  • Elgar AT, Freebody K, Pohlman CL, Shoo LP, Catterall CP (2014) Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Front Plant Sci 5:1–10. https://doi.org/10.3389/fpls.2014.00200

    Article  Google Scholar 

  • Ferri R, Ceballos M, Vischi N, Heredia E, Oggero A (2009) Banco de semillas de un relicto de Espinal (Córdoba, Argentina). Iheringia - Ser Bot 64:93–100

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452

    Article  CAS  PubMed  Google Scholar 

  • Fournier D, Skaug H, Ancheta J, Ianelli J, Magnusson A, Maunder M, Nielsen A, Sibert J (2012) AD model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249

    Article  Google Scholar 

  • Fox J, Weisberg S (2019) An {R} Companion to Applied Regression, Third Edition. Thousand Oaks , California. Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/

  • García D, Martínez D (2012) Species richness matters for the quality of ecosystem services: a test using seed dispersal by frugivorous birds. Proc R Soc B Biol Sci 279:3106–3113. https://doi.org/10.1098/rspb.2012.0175

    Article  Google Scholar 

  • García D, Zamora R, Amico GC (2010) Birds as suppliers of seed dispersal in temperate ecosystems: conservation guidelines from real-world landscapes. Conserv Biol 24:1070–1079. https://doi.org/10.1111/j.1523-1739.2009.01440.x

    Article  PubMed  Google Scholar 

  • Gleditsch J, Carlo TA (2011) Fruit quantity of invasive shrubs predicts the abundance of common native avian frugivores in central Pennsylvania. Divers Distrib 17:244–253

    Article  Google Scholar 

  • González S, Cadenazzi M (2015) Recolonización natural por bosque ribereño en margen izquierda del embalse de Salto Grande: identificación de especies pioneras. Agrocienc - Sitio En Repar 19:1–13. https://doi.org/10.2477/vol19iss1pp1-13

    Article  Google Scholar 

  • Gosper CR (2004) Fruit characteristics of invasive bitou bush, Chrysanthemoides monilifera (Asteraceae), and a comparison with co-occurring native plant species. Aust J Bot 52:223–230

    Article  Google Scholar 

  • Graham LLB, Page SE (2012) Artificial bird perches for the regeneration of degraded tropical peat swamp forest: a restoration tool with limited potential. Restor Ecol 20:631–637. https://doi.org/10.1111/j.1526-100X.2011.00805.x

    Article  Google Scholar 

  • Green R, Dennis A (2007) Management implications and conservation. In: Dennis A, Schupp EW, Green R, Westcott D (eds) Seed dispersal: theory and its application in a changing world. CABI, UK

    Google Scholar 

  • Griscom HP, Ashton MS (2011) Restoration of dry tropical forests in Central America: a review of pattern and process. For Ecol Manage 261:1564–1579. https://doi.org/10.1016/j.foreco.2010.08.027

    Article  Google Scholar 

  • Guevara S, Meave J, Moreno-Casasola P, Laborde J (1992) Floristic composition and structure of vegetation under isolated trees in neotropical pastures. J Veg Sci 3:655–664. https://doi.org/10.2307/3235833

    Article  Google Scholar 

  • Guidetti BY, Amico GC, Dardanelli S, Rodriguez-Cabal MA (2016) Artificial perches promote vegetation restoration. Plant Ecol 217:935–942. https://doi.org/10.1007/s11258-016-0619-4

    Article  Google Scholar 

  • Guidetti BY (2020) Servicios ecosistémicos brindados por aves frugívoras dispersoras de semillas en bosques con ganadería extensiva del Espinal de la provincia de Entre Ríos. PhD Thesis, Universidad Nacional del Nordeste (Argentina).

  • Guimarães PR, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE. https://doi.org/10.1371/journal.pone.0001745

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardwick K, Healey JR, Elliott S, Blakesley D (2004) Research needs for restoring seasonal tropical forests in Thailand: accelerated natural regeneration. New for 27:285–302. https://doi.org/10.1023/B:NEFO.0000022228.08887.d2

    Article  Google Scholar 

  • Hartig F (2021) DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.4. https://CRAN.R-project.org/package=DHARMa

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7. https://doi.org/10.1111/j.1466-822X.2006.00212.x

    Article  Google Scholar 

  • Holl KD (1998) Do bird perching structures elevate seed rain and seedling establishment in abandoned tropical pasture? Restor Ecol 6:253–261. https://doi.org/10.1046/j.1526-100X.1998.00638.x

    Article  Google Scholar 

  • Holl KD (2013) Restoring Tropical Forest. Nat Educ Knowl 4:4

    Google Scholar 

  • Holl KD, Loik ME, Lin EHV, Samuels IA (2000) Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor Ecol 8:339–349

    Article  Google Scholar 

  • Huebner CD, Tobin PC (2006) Invasibility of mature and 15-year-old deciduous forests by exotic plants. Plant Ecol 186:57–68. https://doi.org/10.1007/s11258-006-9112-9

    Article  Google Scholar 

  • Johnson BG, Zuleta GA (2013) Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agric Ecosyst Environ 181:31–40. https://doi.org/10.1016/j.agee.2013.09.002

    Article  Google Scholar 

  • Jones HP, Schmitz OJ (2009) Rapid recovery of damaged ecosystems. PLoS ONE. https://doi.org/10.1371/journal.pone.0005653

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlin MS, Cora A, Bernasconi Salazar JR, Arnulphi S (2020) Mid-term dynamics of the natural revegetation of forest communities in the Center of Córdoba (Argentina). AgriScientia 37:1–13. https://doi.org/10.31047/1668.298x.v37.n1.28068

    Article  Google Scholar 

  • Karubian J, Browne L, Bosque C, Carlo T, Galetti M, Loiselle BA, Blake JG, Cabrera D, Durães R, Labecca FM, Holbrook KM, Holland R, Jetz W, Kümmeth F, Olivo J, Ottewell K, Papadakis G, Rivas G, Steiger S, Voirin B, Wikelski M (2012) Seed dispersal by neotropical birds: emerging patterns and underlying processes. Ornitol Neotrop 23:9–24

    Google Scholar 

  • Keller HA, Velazco SJE, Krauczuk E (2016) Regeneración de plantas leñosas bajo arbustos aislados en un sector de los Esteros del Iberá, Corrientes, Argentina, implicancias etnoecológicas. Bonplandia 25:103–114

    Article  Google Scholar 

  • Lewis P, Collantes MB (1973) El Espinal Periestépico. Cienc e Investig 29:360–377

  • Logan M (2010) Biostatistical design and analysis using R: a practical guide. Wiley, Hoboken

    Book  Google Scholar 

  • Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, van Bentham K, Bolker B, Brooks M (2016) glmmTMB: Generalized Linear Mixed Models using Template Model Builder

  • Martínez-Garza C, Howe HF (2003) Restoring tropical diversity: beating the time tax on species loss. J Appl Ecol 40:423–429. https://doi.org/10.1046/j.1365-2664.2003.00819.x

    Article  Google Scholar 

  • Mastrangelo ME (2014) Conservation on the frontier: understanding and influencing how cattle production impacts avian diversity in the Dry Chaco Forest of Argentina. Victoria University of Wellington, Kelburn

    Google Scholar 

  • Matteucci SD (2012) Ecorregión Espinal. In: Morello J, Matteucci SD, Rodríguez AF, Silva M (eds) Ecorregiones y complejos ecosistémicos argentinos. González, Orientacion Grafica Editora SRL, p 719

    Google Scholar 

  • McCay TS, McCay DH, Czajka JL (2009) Deposition of exotic bird-dispersed seeds into three habitats of a fragmented landscape in the northeastern United States. Plant Ecol 203:59–67. https://doi.org/10.1007/s11258-008-9509-8

    Article  Google Scholar 

  • McDonnell MJ, Stiles EW (1983) The structural complexity of old field vegetation and the recruitment of bird dispersed plant species. Oecologia 56:109–116

    Article  PubMed  Google Scholar 

  • Nepstad DC, Uhl C, Pereira CA, da Silva JMC (1996) A comparative study of tree establishment in abandoned pasture and mature forest of eastern Amazonia. Oikos 76:25–39. https://doi.org/10.2307/3545745

    Article  Google Scholar 

  • Oksanen AJ, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O´Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2017) Community Ecology Package

  • Peirone-Cappri L, Torres R, Estrabou C (2020) Reforestar en áreas agrícola-ganaderas: un estudio de caso evaluando el desempeño de dos especies nativas del Espinal. Bol Soc Argent Bot 55:605–618

    Article  Google Scholar 

  • Pejchar L, Pringle RM, Ranganathan J, Zook JR, Duran G, Oviedo F, Daily GC (2008) Birds as agents of seed dispersal in a human-dominated landscape in southern Costa Rica. Biol Conserv 141:536–544. https://doi.org/10.1016/j.biocon.2007.11.008

    Article  Google Scholar 

  • Pizo MA, dos Santos BTP (2010) Frugivory, post-feeding flights of frugivorous birds and the movement of seeds in a Brazilian fragmented landscape. Biotropica 43:335–342. https://doi.org/10.1111/j.1744-7429.2010.00695.x

    Article  Google Scholar 

  • Ponce AM, Grilli G, Galetto L (2012) Frugivoría y remoción de frutos ornitócoros en fragmentos del bosque chaqueño de Córdoba (Argentina). Bosque 33:33–41. https://doi.org/10.4067/S0717-92002012000100004

    Article  Google Scholar 

  • Prather CM, Huynh A, Pennings SC (2017) Woody structure facilitates invasion of woody plants by providing perches for birds. Ecol Evol 7:8032–8039. https://doi.org/10.1002/ece3.3314

    Article  PubMed  PubMed Central  Google Scholar 

  • Purificação KN, Pascotto MC, Pedroni F, Pereira JMN, Lima NA (2014) Interactions between frugivorous birds and plants in savanna and forest formations of the Cerrado. Biota Neotrop. https://doi.org/10.1590/1676-06032014006814

    Article  Google Scholar 

  • R Development Core Team (2018) R: a language and environment for statistical computing

  • Reid JL, Holl KD (2013) Arrival ≠ Survival. Restor Ecol 21:153–155. https://doi.org/10.1111/j.1526-100X.2012.00922.x

    Article  Google Scholar 

  • Reis A, Campanhã Bechara F, Tres DR (2010) Nucleation in tropical ecological restoration. Sci Agric 67:129–251

    Article  Google Scholar 

  • Rocha-Santos L, Benchimol M, Mayfield MM, Faria D, Pessoa MS, Talora DC, Mariano-Neto E, Cazetta E (2017) Functional decay in tree community within tropical fragmented landscapes: effects of landscape-scale forest cover. PLoS ONE 12:1–18. https://doi.org/10.1371/journal.pone.0175545

    Article  CAS  Google Scholar 

  • Russell, L (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.0. https://CRAN.R-project.org/package=emmeans

  • Scarpa LJ (2013) Fenología reproductiva de plantas leñosas, nativas y exóticas, e interacciones con visitantes florales en un área protegida en el Espinal de Entre Ríos. Universidad Nacional del Litoral, Argentina

    Google Scholar 

  • Schlawin JR, Zahawi RA (2008) ‘ Nucleating ’ succession in recovering neotropical wet forests: the legacy of remnant trees. J Veg Sci 19:485–492. https://doi.org/10.3170/2008-8-18387

    Article  Google Scholar 

  • Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer MH, Böhning-Gaese K (2011a) Specialization and interaction strength in a tropical plant—frugivore network differ among forest strata. Ecology 92:26–36

    Article  PubMed  Google Scholar 

  • Schleuning M, Farwig N, Peters MK, Bergsdorf T, Bleher B, Brandl R, Dalitz H, Fischer G, Freund W, Gikungu MW, Hagen M, Garcia FH, Kagezi GH, Kaib M, Kraemer M, Lung T, Naumann CM, Schaab G, Templin M, Uster D, Wägele JW, Böhning-Gaese K (2011b) Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PLoS ONE 6:e27785. https://doi.org/10.1371/journal.pone.0027785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schorn LA, Krieger A, Canestraro Nadolny M, Bergamo Fenilli TA (2010) Avaliação de técnicas para indução da regeneração natural em área de preservação permanente sob uso anterior do solo com Pinus elliottii. Floresta 40:281–294

    Article  Google Scholar 

  • Sebastian-Gonzalez E (2017) Drivers of species’ role in avian seed-dispersal mutualistic networks. J Anim Ecol 86:878–887

    Article  PubMed  Google Scholar 

  • Shiels AB, Walker LR (2003) Bird perches increase forest seeds on Puerto Rican landslides. Restor Ecol 11:457–465. https://doi.org/10.1046/j.1526-100X.2003.rec0269.x

    Article  Google Scholar 

  • Shoo LP, Catterall CP (2013) Stimulating natural regeneration of Tropical Forest on degraded land: approaches, outcomes, and information gaps. Restor Ecol 21:670–677. https://doi.org/10.1111/rec.12048

    Article  Google Scholar 

  • Sione SMJ, Ledesma SG, Rosenberger LJ, Wilson MG, Sabattini RA (2016) Banco de semillas del suelo en un área de bosques nativos sujeta a cambio en el uso de la tierra (Entre Ríos, Argentina). Rev Fave, Ciencias Agrar 15:1–17

    Google Scholar 

  • Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker BM (2013) Generalized Linear Mixed Models using AD Model Builder

  • Slocum MG (2001) How tree species differ as recruitment foci in a tropical pasture. Ecology 82:2547–2559

    Article  Google Scholar 

  • Tálamo A, Barchuk AH, Garibaldi LA, Trucco CE, Cardozo S, Mohr F (2015) Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina). Oecologia 178:847–854. https://doi.org/10.1007/s00442-015-3269-7

    Article  PubMed  Google Scholar 

  • Toh I, Gillespie M, Lamb D (1999) The role of isolated trees in facilitating tree seedling recruitment at a degraded Sub-Tropical rainforest site. Restor Ecol 7:288–297. https://doi.org/10.1046/j.1526-100X.1999.72022.x

    Article  Google Scholar 

  • Tres DR, Reis A (2009) Técnicas nucleadoras na restauração de floresta ribeirinha em área de floresta ombrófila mista, sul do Brasil. Rev Biotemas 22:59–71

    Article  Google Scholar 

  • White E, Vivian-Smith G (2011) Contagious dispersal of seeds of synchronously fruiting species beneath invasive and native fleshy-fruited trees. Austral Ecol 36:195–202

    Article  Google Scholar 

  • WWF International (2005) Forest restoration in landscapes. Springer Science, New York

    Google Scholar 

  • Yarranton G, Morrison R (1974) Spatial dynamics of a primary succession: nucleation. Br Ecol Soc 62:417–428

    Google Scholar 

  • Zanini L, Ganade G (2005) Restoration of Araucaria forest: the role of perches, pioneer vegetation, and soil fertility. Restor Ecol 13:507–514. https://doi.org/10.1111/j.1526-100X.2005.00063.x

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science, New York

    Book  Google Scholar 

  • Zwiener VP, Cardoso FCG, Padial AA, Marques MCM (2014) Disentangling the effects of facilitation on restoration of the Atlantic Forest. Basic Appl Ecol 15:34–41. https://doi.org/10.1016/j.baae.2013.11.005

    Article  Google Scholar 

Download references

Acknowledgements

The permit for field research was granted by Dirección General de Recursos Naturales Entre Ríos (DGRN), in Authorization N°. 003/15 (File N°. 1.733.195). We thank director Alfredo Berduc from Parque General San Martín, and Valeria Tiropolis, Viviana Fussi and Alba Flores from Reserva de Uso Múltiple Escuela J.B. Alberdi. Special thanks to Rubén G. who assisted us for perches construction and during field work. We also thank Claudia Alzugaray, Cesar Massi, Geraldina Richard and Berenice Schneider for helping in some seed species identification. We thank Romina Vidal-Russell for English revision of the manuscript.

Funding

For this work Brenda Guidetti received financial support provided by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; the Instituto Nacional Tecnología Agropecuaria (INTA), Argentina and Idea Wild Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BYG, SD and GCA contributed in manuscript conceptualization and experiment methodology, BYG and FMLM did the field work and data curation, BYG performed the formal analysis, validation, data visualization, writing and original draft preparation, SD and GCA worked on the project administration, the supervision, review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Brenda Yamile Guidetti.

Ethics declarations

Conflicts of interest

We declare and confirm that the present manuscript has been approved by all co-authors as well as by the responsible authorities. We also declare no conflicts of interests.

Additional information

Communicated by Elizabeth Pringle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 432 kb)

Supplementary file2 (XLSX 58 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidetti, B.Y., Dardanelli, S., Miño, F.M.L. et al. Artificial perches for birds in deforested areas favour a seed rain similar to woodland remnants. Plant Ecol 223, 1261–1274 (2022). https://doi.org/10.1007/s11258-022-01272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-022-01272-3

Keywords

Navigation