Skip to main content

Advertisement

Log in

Myrtaceae richness and distribution across the Atlantic Forest Domain are constrained by geoclimatic variables

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Myrtaceae family presents high species richness in the Atlantic Forest Domain (AFD) of South America, which is considered a world biodiversity hotspot. Evidence indicates that the vegetation composition of the AFD changes from the northern to the southern portion of its territory. We aimed at understanding patterns of Myrtaceae species richness and composition throughout the AFD, underlying geoclimatic variables responsible for Myrtaceae biodiversity distribution. Thus, our study intends to shed light on the relationship between landscape and climate variation to Myrtaceae species richness and composition. We created a matrix of Myrtaceae species occurrence across 57 sites throughout the AFD and extracted geoclimatic co-variables for these sites to predict Myrtaceae diversity and distribution. We explored Myrtaceae composition descriptively through richness and Jaccard dissimilarity index. We employed a generalized linear model and a redundancy analysis (RDA) approach depicting the variations of Myrtaceae richness and distribution related to co-variables. We found 977 Myrtaceae occurrences representing 299 species belonging to 16 genera. The average dissimilarity between locations was 94.5%. Elevation, distance from the ocean, duration of water excess period in days, mean diurnal temperature range, precipitation of wettest month, severity of the water deficit period, and temperature seasonality were the main co-variables that predict the variation in Myrtaceae richness and composition. Our study contributes to understanding biogeographic and evolutionary patterns of Myrtaceae in the Neotropics, providing valuable information for conservation decisions against an overwhelming conjuncture of threats across AFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The geoclimatic variables data were extracted from the database NeoTropTree (Eisenlohr and Oliveira-Filho 2015b, Oliveira Filho 2017), available online. The species occurrence data were extracted from the compilation of studies cited in the Supporting Information. Lists of species used in the study, geoclimatic variables, and studied sites were provided in the Supporting Information.

References

  • Aguiar JT, Higuchi P, Silva AC (2021) Climatic niche determines the geographic distribution of Myrtaceae species in Brazilian subtropical Atlantic Forest. Revista Árvore 45:e4501. https://doi.org/10.1590/1806-908820210000001

    Article  Google Scholar 

  • Almeida-Neto M, Campassi F, Galetti M, Jordano P, Oliveira-Filho A (2008) Vertebrate dispersal syndromes along the Atlantic Forest: broad-scale patterns and macroecological correlates. Glob Ecol Biogeogr 17:503–513. https://doi.org/10.1111/j.1466-8238.2008.00386.x

    Article  Google Scholar 

  • Amorim DS, Santos CMD (2018) Flies, endemicity, and the Atlantic Forest: a biogeographical study using topographic units of analysis. Aust Syst Bot 30:439–469. https://doi.org/10.1071/SB16057

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using Ime4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Batista CB, de Lima IP, Arruda R, Lima MR (2021a) Downscaling the Atlantic Forest biodiversity hotspot: using the distribution of bats to find smaller hotspots with conservation priority. Biol Conserv. https://doi.org/10.1016/j.biocon.2021.109331

    Article  Google Scholar 

  • Batista CB, de Lima IP, Lima MR (2021b) Beta diversity patterns of bats in the Atlantic Forest: how does the scale of analysis affect the importance of spatial and environmental factors? J Biogeogr 48:1–10. https://doi.org/10.1111/jbi.13928

    Article  Google Scholar 

  • Bertoncello R, Yamamoto K, Meireles LD, Shepherd GJ (2011) A phytogeographic analysis of cloud forests and other forest subtypes amidst the Atlantic forests in South and Southeast Brazil. Biodivers Conserv 20:3413–3433. https://doi.org/10.1007/s10531-011-0129-6

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  Google Scholar 

  • Bogoni JA, Graipel ME, Peroni N (2018) The ecological footprint of Acca sellowiana domestication maintains the residual vertebrate diversity in threatened highlands of Atlantic Forest. PLoS ONE. https://doi.org/10.1371/journal.pone.0195199

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogoni JA, Carvalho-Rocha V, Ferraz KMPMB, Peres CA (2021) Interacting elevational and latitudinal gradients determine bat diversity and distribution across the Neotropics. J Anim Ecol 90:2729–2743

    Article  Google Scholar 

  • Bunger M, Stehmann JR, Teixeira Oliveira-Filho A (2014) Myrtaceae throughout the Espinhaço Mountain Range of central-eastern Brazil: floristic relationships and geoclimatic controls. Acta Botanica Brasílica 28:109–119

    Article  Google Scholar 

  • Clarke KR, Somerfield PJ, Gorley RN (2008) Testing null hypothesis in exploratory community analysis, similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366:56–69

    Article  Google Scholar 

  • Clinebell RR II, Phillips OL, Gentry AH, Stark N, Zuuring H (1995) Prediction of neotropical tree and liana species richness from soil and climatic data. Biodivers Conserv 4:56–90. https://doi.org/10.1007/BF00115314

    Article  Google Scholar 

  • Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76

    Article  CAS  Google Scholar 

  • Costa LP, Leite YLR, Fonseca GAB, Fonseca MT (2000) Biogeography of South American forest mammals: endemism and diversity in the Atlantic Forest. Biotropica 32:872–881. https://doi.org/10.1111/j.1744-7429.2000.tb00625.x

    Article  Google Scholar 

  • Dobson AJ (1990) An introduction to generalized linear models. Chapman and Hall, New York

    Book  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04

    Article  Google Scholar 

  • Eisenlohr PV, Oliveira-Filho AT (2015a) Revisiting patterns of tree species composition and their driving forces in the Atlantic Forests of Southeastern Brazil. Biotropica 47:689–701. https://doi.org/10.1111/btp.12254

    Article  Google Scholar 

  • Eisenlohr PV, Oliveira-filho AT (2015b). Obtenção e estruturação de metadados para trabalhos fitogeográficos de síntese e o banco de dados NeotropTree como estudo de caso. In: Eisenlohr PV, Felfili JM, Melo MMRF, Andrade LA., Meira-neto JAA (eds) Fitossociologia no Brasil: Métodos e Estudos de Casos , volume 2. 1 ed. Editora UFV, Viçosa, pp 387–411

  • Esteban EJL, Castilho C, Melgaço KL, Costa FRC (2021) The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian Forest. New Phytol 229:1995–2006. https://doi.org/10.1111/nph.17005

    Article  CAS  PubMed  Google Scholar 

  • Falkenberg D, Voltolini JC (1995) The montane cloud Forest in Southern Brazil. In: Hamilton LS, Juvik JO, Scaten FN (eds) Tropical montane cloud forests. Ecological studies, v 110. Springer Verlag, New York

    Google Scholar 

  • Flora e Funga do Brasil (2022) Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Accessed on 12 Apr 2022

  • Gentry AH (1995) Diversity and floristic composition of neotropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 146–194

    Chapter  Google Scholar 

  • Giehl ELH, Jarenkow JA (2012) Niche conservatism and the differences in species richness at the transition of tropical and subtropical climates in South America. Ecography 35:933–943. https://doi.org/10.1111/j.1600-0587.2011.07430.x

    Article  Google Scholar 

  • Gressler E, Pizo MA, Morellato P (2006) Polinização e dispersão de sementes em Myrtaceae do Brasil. Revista Brasileira De Botânica 4:509–530

    Google Scholar 

  • Heiberger (2013) HH: Statistical Analysis and Data Display: Heiberger and Holland. R package version 2.3–42. http://CRAN.R-project.org/package=HH )

  • Higuchi P, Silva AC, Ferreira TS, Souza ST, Gomes JP, Silva KM, Santos KF (2012) Floristic composition and phytogeography of the tree component of Araucaria Forest fragments in southern Brazil. Braz J Bot 35:145–157. https://doi.org/10.1590/S0100-84042012000200004

    Article  Google Scholar 

  • Hirota MM (2005) Capítulo 6: Monitoramento da Cobertura da Mata Atlântica brasileira. In: Galindo-Leal C, Câmara IG (eds) Mata Atlântica: Biodiversidade, Ameaças e Perspectivas. Fundação SOS Mata Altântica e Conservação Internacional, Belo Horizonte

  • Landrum LR (1981) A monograph of the genus Myrceugenia (Myrtaceae). Flora Neotropica. The New York Botanical Garden, New York. Vol. 29, p 135

  • Ledo RMD, Colli GR (2017) The historical connections between the Amazon and the Atlantic Forest revisited. J Biogeography 4:2551–2563. https://doi.org/10.1111/jbi.13049

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology: developments in environmental modeling 20, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lima RAF, Mori DP, Pitta G, Melito MO et al (2015) How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys. Biodivers Conserv 24:2135–2148. https://doi.org/10.1007/s10531-015-0953-1

    Article  Google Scholar 

  • Lira PK, Portela CQ, Tambosi LR (2021) Land cover changes and an uncertain future: will the brazilian atlantic forest lose the chance to become a hopespot? In: Marques CM, Grelle EV (eds) The Atlantic Forest: history, biodiversity, threats and opportunities of the mega-diverse forest. Springer, pp 115–132

    Google Scholar 

  • Lucas EJ, Bunger MO (2015) Myrtaceae in the Atlantic Forest: their role as a ‘model’ group. Biodivers Conserv 24:2165–2180. https://doi.org/10.1007/s10531-015-0992-7

    Article  Google Scholar 

  • Martins-Ramos D, Chaves CL, Bortoluzzi RLC, Mantovani A (2011) Florística de floresta ombrófila mista altomontana e de campos em Urupema, Santa Catarina, Brasil. Revista Brasileira De Biociências 9:156–166

    Google Scholar 

  • Mazine F, Souza VC (2008) Myrtaceae dos Campos de Altitude do Parque nacional do Caparaó—Espírito Santo/Minas Gerais, Brasil. Rodriguésia 59:057–074

    Article  Google Scholar 

  • Meireles LD, Shepherd GJ, Kinoshita LS (2008) Variações na composição florística e na estrutura fitossociológica de uma floresta ombrófila densa alto-montana na Serra da Mantiqueira, Monte Verde, MG. Revista Brasileira De Botânica 31:559–574

    Google Scholar 

  • Menini Neto L, Furtado SG, Zappi DC et al (2016) Biogeography of epiphytic Angiosperms in the Brazilian Atlantic Forest, a world biodiversity hotspot. Braz J Bot 39:261–273. https://doi.org/10.1007/s40415-015-0238-7

    Article  Google Scholar 

  • Mori SA, Boom BM, Prance GT (1981) Distribution patterns and conservation of eastern Brazilian coastal forest tree species. Brittonia 33:233–245. https://doi.org/10.2307/2806330

    Article  Google Scholar 

  • Mori SA, Boom BM, Carvalino AM, Santos TS (1983) Ecological importance of Myrtaceae in an eastern Brazilian wet forest. Biotropica 15:68–70. https://doi.org/10.2307/2388002

    Article  Google Scholar 

  • Mulder CPH, Uliassi DD, Doak DF (2001) Physical stress and diversity-productivity relationships: the role of positive interactions. PNAS 98:6704–6708

    Article  CAS  Google Scholar 

  • Murray-Smith C, Brummit NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2009) Plant diversity hotspots in Atlantic Coastal Forest of Brazil. Conserv Biol 23: 151–163. https://www.jstor.org/stable/29738701

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Neves DM, Dexter KG, Pennington RT et al (2017) Dissecting a biodiversity hotspot: the importance of environmentally marginal habitats in the Atlantic Forest Domain of South America. Divers Distrib 23:898–909. https://doi.org/10.1111/ddi.12581

    Article  Google Scholar 

  • Oksanen et al. (2013) vegan: community ecology package. https://rdrr.io/cran/vegan/ Accessed Apr 2021

  • Oliveira-Filho AT (2009) Classificação das fitofisionomias da América do Sul Cisandina tropical e subtropical: proposta de um novo sistema prático e flexível ou uma injeção a mais de caos? Rodriguésia 60:237–258

    Article  Google Scholar 

  • Oliveira-Filho AT (2017) NeoTropTree, Flora arbórea da Região Neotropical: Um banco de dados envolvendo biogeografia, diversidade e conservação. Universidade Federal de Minas Gerais. (http://www.neotroptree.info). Acessed on 12 April 2022

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Article  Google Scholar 

  • Pizo MA, Simão I, Galetti M (1995) Diet and flock size of sympatric parrots in the Atlantic Forest of Brazil. Ornitologia Neotropical 6:87–95

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rambo B (1951) O elemento andino no pinhal rio-grandense. Anais Botânicos Do Herbário Barbosa Rodrigues 3:3–39

    Google Scholar 

  • Rezende VL, de Miranda PLS, Meyer L et al (2015a) Tree species composition and richness along altitudinal gradients as a tool for conservation decisions: the case of Atlantic semideciduous forest. Biodivers Conserv 24:2149–2163

    Article  Google Scholar 

  • Rezende VL, Eisenlohr PV, Vibrans AC et al (2015b) Humidity, low temperature extremes, and space influence floristic variation across an insightful gradient in the Subtropical Atlantic Forest. Plant Ecol 216:759–774. https://doi.org/10.1007/s11258-015-0465-9

    Article  Google Scholar 

  • Rezende CL, Scarano FR, Assad ED et al (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv. https://doi.org/10.1016/J.PECON.2018.10.002

    Article  Google Scholar 

  • Rezende VL, Pontara V, Bueno ML et al (2021) Phylogenetic regionalization of tree assemblages reveal novel patterns of evolutionary affinities in the Atlantic Forest. J Biogeogr 48:798–810. https://doi.org/10.1111/jbi.14038

    Article  Google Scholar 

  • Ryota and Shumodaira (2011) pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling. R package version 1.2-2. http://CRAN.R-project.org/package=pvclust)

  • Saiter FZ, Brown JL, Thomas WW, Oliveira-Filho AT, Carnaval AC (2016) Environmental correlates of floristic regions and plant turnover in the Atlantic Forest hotspot. J Biogeogr 43:2223–2231

    Article  Google Scholar 

  • Sigrist MS, Carvalho CJB (2008) Detection of areas of endemism on two spatial scales unsing Parsimony Analysis of Endemicity (PAE): the Neotropical region and the Atlantic Forest. Biota Neotrop 8:33–42

    Article  Google Scholar 

  • Sólorzano A, Brasil LSCA, Oliveira RR (2021) The Atlantic Forest ecological history: from pre-colonial times to the Antropocene. In: Marques CM, Grelle EV (eds) The Atlantic Forest: history, biodiversity, threats and opportunities of the mega-diverse forest. Springer, pp 25–44

    Chapter  Google Scholar 

  • Souza Neto JD, Santos EK, Lucas E, Vetö NM, Barrientos-Diaz O, Staggemeier VG, Vasconcelos T, Turchetto-Zolet AC (2022) Advances and perspectives on the evolutionary history and diversification of Neotropical Myrteae (Myrtaceae). Bot J Linn Soc. https://doi.org/10.1093/botlinnean/boab095/6523161

    Article  Google Scholar 

  • Staggemeier VG, Diniz-Filho JAF, Morellato LPC (2010) The shared influence of phylogeny and ecology on the reproductive patterns of Myrteae (Myrtaceae). J Ecol 98:1409–1421. https://doi.org/10.1111/j.1365-2745.2010.01717.x

    Article  Google Scholar 

  • Staggemeier VG, Diniz-Filho JAF, Forest F, Lucas E (2015) Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest. Ann Bot 115:747–761. https://doi.org/10.1093/aob/mcv005

    Article  PubMed  PubMed Central  Google Scholar 

  • Staggemeier VG, Cazetta E, Morellato LPC (2017) Hyperdominance in fruit production in the Brazilian Atlantic rain forest: the functional role of plants in sustaining frugivores. Biotropica 49:71–82. https://doi.org/10.1111/btp.12358

    Article  Google Scholar 

  • Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:894–911

    Google Scholar 

  • Tabarelli M, Mantovani W (1999) A riqueza de espécies arbóreas na floresta atlântica de encosta no estdo de São Paulo (Brasil). Revta Brasil Bot 22:217–223

    Google Scholar 

  • Thomas WW, Carvalho AMVD, Amorim AMA et al (1998) Plant endemism in two forests in southern Bahia. Braz Biodivers Conserv 7:311–322. https://doi.org/10.1023/A:1008825627656

    Article  Google Scholar 

  • Thornhill AH, Ho SYW, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol Phylogenet Evol 93:29–43

    Article  Google Scholar 

  • Vasconcelos TNC, Proença CEB, Ahmad B, Aguilar DS et al (2017) Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Mol Phylogenet Evol 109:113–137

    Article  Google Scholar 

  • Viana VM, Tabanez AAJ (1996) Biology and conservation of forest fragments in Brazilian Atlantic moist forest. In: Schelhas J, Greenberg R (eds) Forest patches in Tropical Landscapes. Island Press, Washington

    Google Scholar 

  • Wagner MA, Fiaschi P (2020) Myrtaceae from the Atlantic Forest subtropical highlands of São Joaquim National Park (Santa Catarina, Brazil). Rodriguesia. https://doi.org/10.1590/2175-7860202071006

    Article  Google Scholar 

  • Werneck MS, Sobral MEG, Rocha CTV, Landau EC, Stehmann JR et al (2011) Distribution and endemism of angiosperms in the Atlantic Forest. Natureza e Conservação 9:188–193

    Article  Google Scholar 

  • Whitaker and Christman (2010) clustsig: Significant Cluster Analysis. R package version 1.0 http://CRAN.Rproject.org/package=clustsig)

  • Zanella A, Brum FTB, Petisco-Souza AC, Maccori GF, Carlucci MB (2022) Tree species of the Araucaria Mixed Forest: which, how many and how threatened are they? Acta Bot Bras. https://doi.org/10.1590/0102-33062021abb0021

    Article  Google Scholar 

  • Zwiener VP, Lima RAF, Sánchez-Tapia A, Rocha DSB, Marques MCM (2021) Tree diversity in the Brazilian Atlantic Forest: biases and general patterns using different sources of information. In: Marques CM, Grelle EV (eds) The Atlantic Forest: history, biodiversity, threats, and opportunities of the mega-diverse forest. Springer, pp 115–132

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Suzana Alcantara, Dr. Eduardo Giehl, and Dr. Rafael Barbizan Sühs for their valuable input on the study, and Eduardo de Godoy Estevan Ferreira for listing species names to Supporting Information. We thank two anonymous reviewers for their valuable contribution to this manuscript.

Funding

Funding for MAW was provided by CAPES Coordination for Advancement of Higher Education Personnel. JAB is supported by the São Paulo Research Foundation (FAPESP) postdoctoral fellowship grants 2018-05970-1 and 2019-11901-5. PF is supported by the National Council for Scientific and Technological Development (CNPq) grant 310502/2019-5.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by MdAW, JAB, and PF. The first draft of the manuscript was written by MdAW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mariana de Andrade Wagner.

Ethics declarations

Conflict of interest

Our research did not include any conflict of interest.

Animal research/consent to participate

Our study did not include animals or human participants.

Consent to publish

We did not use data that required consent to publish.

Plant reproducibility

We used plant occurrence data from the compilation of published studies. We taxonomically checked the species names and synonyms, to use the correct names. We did not check every occurrence record for their herbarium specimen species determination.

Clinical trials registration

Our research did not include any clinical trials.

Additional information

Communicated by Kyle Palmquist.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade Wagner, M., Bogoni, J.A. & Fiaschi, P. Myrtaceae richness and distribution across the Atlantic Forest Domain are constrained by geoclimatic variables. Plant Ecol 223, 1079–1092 (2022). https://doi.org/10.1007/s11258-022-01258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-022-01258-1

Keywords

Navigation