Skip to main content

Climate warming and introduced herbivores disrupt alpine plant community of an oceanic island (Tenerife, Canary Islands)

Abstract

Invasive alien species and climate change are two of the main current threats to conservation of biodiversity worldwide. Their effects have been extensively studied individually, but we know less about their combined effect. This study analyzes the population changes in the plant community of the high mountain legume shrub habitat of Tenerife over 10 years (between 2009 and 2018), using alien herbivore exclusion plots distributed over two sectors with different patterns of climate. Our outcomes show contrasting effects of herbivory and climate in plant communities, with significant shifts in community composition. The dominant species, Teide broom (Spartocytisus supranubius), is negatively affected by both climate and alien herbivores, leading to a regression of its abundance. In contrast, a formerly rare species, Pterocephalus lasiospermus, is benefiting from warmer temperatures and from herbivore presence owing to its low palatability. Simultaneously, some thermal native species from the neighboring pine forest are invading the alpine ecosystem. We conclude that the alpine habitat is changing very quickly and differently according to whether it is in warmer or colder sectors of the summit of Tenerife. This work reveals the need to simultaneously consider multiple drivers to understand the response of mountain ecosystems to global change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alexander JM, Chalmandrier L, Lenoir J, Burgess TI, Essl F, Haider S, Kueffer Ch, McDougall K, Milbau A, Nuñez MA, Pauchard A, Rabitsch W, Sanders NJ, Pellissier L (2017) Lags in the response of mountain plant communities to climate change. Glob Change Biol 24(2):563–579. https://doi.org/10.1111/gcb.13976

    Article  Google Scholar 

  2. Arévalo JR, Delgado JD, Otto R, Naranjo A, Salas M, Fernández-Palacios JM (2005) Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect Plant Ecol Evol Syst 7(3):185–202. https://doi.org/10.1016/j.ppees.2005.09.003

    Article  Google Scholar 

  3. Bello-Rodríguez V, Cubas J, del Arco MJ, Martín JL, González-Mancebo JM (2019) Elevational and structural shifts in the treeline of an oceanic island (Tenerife, Canary Islands) in the context of global warming. Int J Appl Earth Obs Geoinf 82:101918. https://doi.org/10.1016/j.jag.2019.101918

    Article  Google Scholar 

  4. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–7. https://CRAN.R-project.org/package=lme4. Accessed 12 Mar 2020

  5. Borregaard M K, Matthews TJ, Ugland K (2013) Gambin (version 1.0) R package. https://cran.r-project.org/web/packages/gambin/index.html. Accessed 12 Mar 2020

  6. Brown JH, Valone TJ, Curtin CG (1997) Reorganization of an arid ecosystem in response to recent climate change. Proc Natl Acad Sci 94(18):9729–9733. https://doi.org/10.1073/pnas.94.18.9729

    CAS  Article  PubMed  Google Scholar 

  7. Brook BW (2008) Synergies between climate change, extinctions and invasive vertebrates. Wildlife Res 35(3):249–252. https://doi.org/10.1071/WR07116

    Article  Google Scholar 

  8. Cairns DM, Moen JON (2004) Herbivory influences tree lines. J Ecol 92(6):1019–1024. https://doi.org/10.1111/j.1365-2745.2004.00945.x

    Article  Google Scholar 

  9. Canty A, Ripley B-D (2012) Boot: Bootstrap R (S-PLUS) functions, R package version 1.3–7. https://CRAN.R-project.org/package=boot. Accessed 12 Mar 2020

  10. Caujapé-Castells J, Tye A, Crawford DJ, Santos-Guerra A, Sakai A, Beaver K, Lobin W, Vincent Florens FB, Moura M, Jardim R, Gómes I, Kueffer Ch (2010) Conservation of oceanic island floras: present and future global challenges. Perspect Plant Ecol Evol Syst 12(2):107–129. https://doi.org/10.1016/j.ppees.2009.10.001

    Article  Google Scholar 

  11. Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322(5899):258–261. https://doi.org/10.1126/science.1162547

    CAS  Article  PubMed  Google Scholar 

  12. Cubas J, Martín-Esquivel JL, Nogales M, Irl SDH, Hernández-Hernández R, López-Darias M, Marrero-Gómez M, del Arco M, González-Mancebo JM (2018) Contrasting effects of invasive rabbits on endemic plants driving vegetation change in a subtropical alpine insular environment. Biol Invasions 20(3):793–807. https://doi.org/10.1007/s10530-017-1576-0

    Article  Google Scholar 

  13. Cubas J, Irl SDH, Villafuerte R, Bello-Rodríguez V, Rodríguez-Luengo JL, del Arco M, Martín-Esquivel JL, González-Mancebo JM (2019) Endemic plant species are more palatable to introduced herbivores than non-endemics. Proc R Soc B 286(1900):0190136. https://doi.org/10.1098/rspb.2019.0136

    Article  Google Scholar 

  14. Daly AJ, Baetens JM, De Baets B (2018) Ecological diversity: measuring the unmeasurable. Mathematics 6(7):119. https://doi.org/10.3390/math6070119

    Article  Google Scholar 

  15. del Arco M (2008) Consecuencias del cambio climático sobre la flora y vegetación canaria. El Cambio Climático en Canarias. In: Méndez JM, Vázquez M (eds) El Cambio Climático en Canarias. Academia Canaria de Ciencias, La laguna, pp 79–100

    Google Scholar 

  16. del Arco M, Pérez de Paz PL, Acebes JR, González Mancebo JM, Reyes Betancort JA, Bermejo JA, de Armas S, González González R (2006) Bioclimatology and climatophilous vegetation of Tenerife (Canary Islands). Ann Bot Fenn 43(3):167–192

    Google Scholar 

  17. del Arco Aguilar MJ, Rodríguez Delgado O (2018) Vegetation of the Canary Islands. Plant and vegetation. Springer, Cham. https://doi.org/10.1007/978-3-319-77255-4

    Book  Google Scholar 

  18. Diaz HF, Bradley RS, Ning L (2014) Climatic changes in mountain regions of the American Cordillera and the tropics: historical changes and future outlook. Arct Antarct Alp Res 46(4):735–743. https://doi.org/10.1657/1938-4246-46.4.735

    Article  Google Scholar 

  19. Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22(9):489–496. https://doi.org/10.1016/j.tree.2007.07.001

    Article  PubMed  Google Scholar 

  20. Eccel E, Cordano E, Toller G (2014). R-package ClimClass: climate classification according to several indices. https://CRAN.R-project.org/package=ClimClass. Accessed 12 Mar 2020

  21. Fernández-Palacios JM (1992) Climatic responses of plant species on Tenerife, The Canary Islands. J Veg Sci 3(5):595–603. https://doi.org/10.2307/3235826

    Article  Google Scholar 

  22. Fernández-Palacios JM, Otto R, Thebaud C, Price J (2014) Overview of habitat history in subtropical oceanic island summit ecosystems. Arct Antarct Alp Res 46(4):801–809. https://doi.org/10.1657/1938-4246-46.4.801

    Article  Google Scholar 

  23. García-Cervigón AI, García-Hidalgo M, Martín-Esquivel JL, Rozas V, Sangüesa-Barreda G, Olano JM (2019) The Patriarch: a Canary Islands juniper that has survived human pressure and volcanic activity for a millennium. Ecology 100(10):e02780. https://doi.org/10.1002/ecy.2780

    Article  PubMed  Google Scholar 

  24. Garzón Machado V, del Arco Aguilar M (2012). Estudio predictivo de distribución de los pisos de vegetación en Tenerife y Gran Canaria, para diferentes escenarios de Cambio Climático. MEMORIA FASES B-D “Proyecto CLIMA-IMPACTO (MAC/3/C159). https://climaimpacto.eu/wp-content/uploads/2013/03/CI4A_20120401_DEFINITIVO.pdf. Accessed 12 Mar 2020

  25. González-Rodríguez AM, Brito P, Lorenzo JR, Gruber A, Oberhuber W, Wieser G (2017) Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp Bot 127(2):97–108. https://doi.org/10.1007/s00035-017-0189-7

    Article  Google Scholar 

  26. Graham RW, Grimm EC (1990) Effects of global climate change on the patterns of terrestrial biological communities. Trends Ecol Evol 5(9):289–292. https://doi.org/10.1016/0169-5347(90)90083-P

    CAS  Article  PubMed  Google Scholar 

  27. Halloy SRP, Mark AF (2003) Climate-change effects on alpine plant biodiversity: a New Zealand perspective on quantifying the threat. Arct Antarct Alp Res 35:248–254. https://doi.org/10.1657/1523-0430(2003)035[0248:CEOAPB]2.0.CO;2

    Article  Google Scholar 

  28. Höllermann PW (1978) Geoecological aspects of the upper timberline in Tenerife, Canary Islands. Artic Alp Res 10(2):365–382. https://doi.org/10.1080/00040851.1978.12003974

    Article  Google Scholar 

  29. Ibarrola-Ulzurrun E, Marcello J, Gonzalo Martín C, Martin Esquivel JL (2019) Temporal dynamic analysis of a mountain ecosystem based on multi-source and multi-scale remote sensing data. Ecosphere 10(16):1–17. https://doi.org/10.1002/ecs2.2708

    Article  Google Scholar 

  30. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374. https://doi.org/10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2

    Article  Google Scholar 

  31. Keith SA, Newton AC, Herbert RJ, Morecroft MD, Bealey CE (2009) Non-analogous community formation in response to climate change. J Nat Conserv 17(4):228–235. https://doi.org/10.1016/j.jnc.2009.04.003

    Article  Google Scholar 

  32. Kyncl T, Suda J, Wild J, Wildová R, Herben T (2006) Population dynamics and clonal growth of Spartocytisus supranubius (Fabaceae), a dominant shrub in the alpine zone of Tenerife, Canary Islands. Plant Ecol 186(1):97–108. https://doi.org/10.1007/s11258-006-9115-6

    Article  Google Scholar 

  33. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771. https://doi.org/10.1126/science.1156831

    CAS  Article  PubMed  Google Scholar 

  34. Machado MC, Galván B (2012) La vegetación en el valle de Chafarí (Las Cañadas del Teide, Tenerife) antes de la conquista castellana. Cuaternario y Geomorfología 12:117–125

    Google Scholar 

  35. Mainka SA, Howard GH (2010) Climate change and invasive species: double jeopardy. Integr Zool 5(2):102–111. https://doi.org/10.1111/j.1749-4877.2010.00193.x

    Article  PubMed  Google Scholar 

  36. Martín JL, Bethencourt J, Cuevas-Agulló E (2012) Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Clim Change 114(2):343–355. https://doi.org/10.1007/s10584-012-0407-7

    Article  Google Scholar 

  37. Martín JL, Marrero MV, del Arco M, Garzón V (2015) Aspectos clave para un plan de adaptación de la biodiversidad terrestre de Canarias al cambio climático. In: Zavala MA (ed) Herrero Los Bosques y la Biodiversidad frente al Cambio Climático: impactos, Vulnerabilidad y Adaptación en España. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, pp 573–580

    Google Scholar 

  38. McEachern AK, Thomson DM, Chess KA (2009) Climate alters response of an endemic island plant to removal of invasive herbivores. Ecol Appl 19(6):1574–1584. https://doi.org/10.1890/08-1574.1

    Article  PubMed  Google Scholar 

  39. McKenzie MM, Giambelluca TW, Diaz HF (2019) Temperature trends in Hawai‘i: a century of change, 1917–2016. Int J Climatol 39(10):3987–4001. https://doi.org/10.1002/joc.6053

    Article  Google Scholar 

  40. Nogales M, Rodríguez-Luengo JL, Marrero P (2006) Ecological effects and distribution of invasive non-native mammals on the Canary Islands. Mamm Rev 36(1):49–65. https://doi.org/10.1111/j.1365-2907.2006.00077.x

    Article  Google Scholar 

  41. Nogué S, de Nascimento L, Fernández-Palacios JM, Whittaker RJ, Willis K (2013) The ancient forests of La Gomera, Canary Islands, and their sensitivity to environmental change. J Ecol 101(2):368–377. https://doi.org/10.1111/1365-2745.12051

    Article  Google Scholar 

  42. Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorial. https://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf. Accessed 12 Mar 2020

  43. Olano JM, Brito P, González-Rodríguez AM, Martín-Esquivel JL, García-Hidalgo M, Rozas V (2017) Thirsty peaks: drought events drive keystone shrub decline in an oceanic island mountain. Biol Conserv 215:99–106. https://doi.org/10.1016/j.biocon.2017.09.008

    Article  Google Scholar 

  44. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado R, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Molero Mesa J, Nagy L, Pelino G, Puşcaş M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336(6079):353–355. https://doi.org/10.1126/science.1219033

    CAS  Article  PubMed  Google Scholar 

  45. Pepin N, Bradley RS, Diaz HF, Baraër M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schöner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5(5):424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  46. Perera-Castro AV, Brito P, González-Rodríguez AM (2017) Light response in alpine species: different patterns of physiological plasticity. Flora 234:165–172. https://doi.org/10.1016/j.flora.2017.07.007

    Article  Google Scholar 

  47. Perera-Castro AV, Brito P, González-Rodríguez AM (2018) Changes in thermic limits and acclimation assessment for an alpine plant by chlorophyll fluorescence analysis: Fv/Fm vs. Rfd. Photosynthetica 56(2):527–536. https://doi.org/10.1007/s11099-017-0691-6

    CAS  Article  Google Scholar 

  48. Raunkiaer C (1934) The life forms of plants and statistical plant geography. Oxford University Press, Oxford

    Google Scholar 

  49. Rodríguez-Delgado O, Elena-Roselló E (2006) Evolución del paisaje vegetal del Parque Nacional del Teide. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  50. Sanroma E, Palle E, Sanchez-Lorenzo A (2010) Long-term changes in insolation and temperatures at different altitudes. Environ Res Lett 5(2):024006. https://doi.org/10.1088/1748-9326/5/2/024006

    CAS  Article  Google Scholar 

  51. Santana B, Martín JL (2013). Catálogo de mapas climáticos de Gran Canaria y Tenerife—Tomo 5. Proyecto Clima-Impacto (MAC/3/C159) Viceconsejería de Medio Ambiente del Gobierno de Canarias (122 páginas) https://www.climaimpacto.eu/efectos/catalogos-climaticos/4-tenerife. Accessed 12 Mar 2020

  52. Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners” and ‘losers’. J Exp Biol 213:912–920. https://doi.org/10.1242/jeb.037473

    CAS  Article  PubMed  Google Scholar 

  53. Steinbauer MJ, Field R, Grytnes JA, Trigas P, Ah-Peng C, Attorre F et al (2016) Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob Ecol Biogeogr 25(9):1097–1107. https://doi.org/10.1111/geb.12469

    Article  Google Scholar 

  54. Sventenius ERS (1946) Notas sobre la flora de Las Cañadas de Tenerife. Boletín del Instituto Nacional de Investigaciones Agronómicas 15:149–171

    Google Scholar 

  55. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GH, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145. https://doi.org/10.1038/nature02121

    CAS  Article  PubMed  Google Scholar 

  56. Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448(7153):550. https://doi.org/10.1038/448550a

    CAS  Article  PubMed  Google Scholar 

  57. Ugland KI, Lambshead PJD, McGill B, Gray JS, O’Dea N, Ladle RJ, Whittaker RJ (2007) Modelling dimensionality in species abundance distributions: description and evaluation of the Gambin model. Evol Ecol Res 9:313–324

    Google Scholar 

  58. Walther GR (2003) Plants in a warmer world. Perspectives in plant ecology. Evol Syst 6(3):169–185. https://doi.org/10.1078/1433-8319-00076

    Article  Google Scholar 

  59. Walther GR (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B 365(1549):2019–2024

    Article  Google Scholar 

  60. Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16(5):541–548. https://doi.org/10.1111/j.1654-1103.2005.tb02394.x

    Article  Google Scholar 

  61. Wieser G, Brito P, Lorenzo JR, González-Rodríguez AM, Morales D, Jiménez MS (2016) Canary Island pine (Pinus canariensis), an evergreen species in a semiarid treeline. Progress in botany, vol 77. Springer, Cham, pp 415–435

    Google Scholar 

  62. Wilsey BJ, Potvin C (2000) Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81(4):887–892. https://doi.org/10.1890/0012-9658(2000)081[0887:BAEFIO]2.0.CO;2

    Article  Google Scholar 

  63. Winter, B (2013). Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499.

  64. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, de Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626. https://doi.org/10.1038/nature07840

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Teide National Park (Cabildo Insular de Tenerife and Canary island Government). We also thank the Ministerio de Agricultura, Alimentación y Medio Ambiente (REF 1621/2015) for the financial support. Jonay Cubas holds a PhD fellowship from La Laguna University. We thank Manuel Durbán and Ángel Bañares for having been the initial promoters of this long study. We also thank Eduardo Carqué and Zayda Rodríguez for their help in the field work and to Guido Jones for the English revision of original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Cubas.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Scott J. Meiners.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martín-Esquivel, J.L., Marrero-Gómez, M., Cubas, J. et al. Climate warming and introduced herbivores disrupt alpine plant community of an oceanic island (Tenerife, Canary Islands). Plant Ecol 221, 1117–1131 (2020). https://doi.org/10.1007/s11258-020-01066-5

Download citation

Keywords

  • Climate change
  • Ecosystem disturbance
  • Herbivory
  • High mountain
  • Vegetation dynamic