Skip to main content

Arbuscular mycorrhizal fungi benefit drought-stressed Salsola laricina

Abstract

Due to its contribution to plant drought tolerance, arbuscular mycorrhizae (AM) may play an important role in the revegetation of degraded pastures in semi-arid and arid regions. Salsola laricina, an important forage plant in Iran, belongs to predominantly non-mycotrophic Chenopodiaceae, but field observations suggest that it forms functional mycorrhizae. We therefore, established a greenhouse experiment to test the mycorrhizal response of this species at four levels of soil moisture and to determine the contribution of AM to the drought tolerance of this species. The plants were grown in sterilized soil and either left non-inoculated or inoculated with four AM fungal isolates originating from an S. laricina field site to investigate also the functional variability of sympatric AM fungal species. Root colonization of S. laricina by AM fungi was found in all the inoculated treatments, and mycorrhizae clearly improved the plants' growth and P uptake. The mycorrhizal responses, i.e., the differences between mycorrhizal and non-mycorrhizal plants, were most pronounced at the lowest soil moisture level of 25% field capacity, which strongly suggests that mycorrhiza contributes to the drought tolerance of S. laricina. Differential effects of the four inoculated AM fungal isolates, independent of their root colonization levels, indicate differential compatibility of the isolates with this host plant species. The findings of the study have important implications for the revegetation of degraded pastures with S. laricina, as they show that AM should be considered in this process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of Mycorrhiza infected Pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169(7):704–709. https://doi.org/10.1016/j.jplph.2012.01.014

    CAS  Article  PubMed  Google Scholar 

  2. Al-Khaliel AS (2010) Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus Mosseae. Plant Soil Environ 56:318–324

    CAS  Article  Google Scholar 

  3. Allen MF (2011) Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems. J Arid Land 3(3):155–163. https://doi.org/10.3724/SP.J.1227.2011.00155

    Article  Google Scholar 

  4. Allen EB, Allen MF (1988) Facilitation of succession by the nonmycotrophic colonizer Salsola Kali (Chenopodiaceae) on a harsh site: effects of mycorrhizal fungi. Am J Bot 75(2):257–266. https://doi.org/10.1002/j.1537-2197.1988.tb13437.x

    Article  Google Scholar 

  5. Allen MF, Allen E, Friese CF (1989) Responses of the non7hyphen; mycotrophic plant salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 111(1):45–49. https://doi.org/10.1111/j.1469-8137.1989.tb04216.x

    Article  Google Scholar 

  6. Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032. https://doi.org/10.5897/ajar10.027

    Article  Google Scholar 

  7. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42. https://doi.org/10.1007/s005720100097

    Article  Google Scholar 

  8. Azcon R, Gómez M, Tobar R (1996) Physiological and nutritional responses by lactuca sativa l. To nitrogen sources and mycorrhizal fungi under drought conditions. Biol Fertil Soils 22(1–2):156–161. https://doi.org/10.1007/s003740050091

    Article  Google Scholar 

  9. Beltrano J, Ronco M (2008) Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: effect on growth and cell membrane stability. Braz J Plant Physiol 20(1):29–37. https://doi.org/10.1590/S1677-04202008000100004

    CAS  Article  Google Scholar 

  10. Bitterlich M, Franken P (2016) Connecting polyphosphate translocation and hyphal water transport points to a key of mycorrhizal functioning. New Phytol 211:1147–1149. https://doi.org/10.1111/nph.14104

    Article  PubMed  Google Scholar 

  11. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    CAS  Article  Google Scholar 

  12. Cardoso EJBN, Vasconcellos RLF et al (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70(4):274–289. https://doi.org/10.1590/S0103-90162013000400009

    Article  Google Scholar 

  13. Chitarra W, Pagliarani Ch et al (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171(2):1009–1023. https://doi.org/10.1104/pp.16.00307

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1570-6_23

    Google Scholar 

  15. Deng L, Sweeney S, Shangguan ZP (2014) Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe. Grass Forage Sci 69(3):524–533. https://doi.org/10.1111/gfs.12065

    Article  Google Scholar 

  16. Del Blanco IA, Rajaram S, Kronstad WE, Reynolds MP (2000) Physiological performance of synthetic hexaploid wheat–derived populations. Crop Sci 40:1257–1263

    Article  Google Scholar 

  17. Dijkstra FA, He M, Johansen MP, Harrison JJ, Keitel C (2015) Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15n and 32p tracers. Soil Biol Biochem 82:135–142. https://doi.org/10.1016/j.soilbio.2014.12.021

    CAS  Article  Google Scholar 

  18. Essahibi A, Benhiba L, Babram MA, Ghoulam C, Qaddoury A (2018) Influence of arbuscular mycorrhizal fungi on the functional mechanisms associated with drought tolerance in carob. Cera Trees 32(1):87–97. https://doi.org/10.1007/s00468-017-1613-8

    Article  Google Scholar 

  19. Estrada B, Beltrán-Hermoso M, Palenzuela J, Iwase K, Ruiz-Lozano JM, Barea JM, Oehl F (2013) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. J Arid Environ 97:170–175. https://doi.org/10.1016/j.jaridenv.2013.05.019

    Article  Google Scholar 

  20. Fouad MO, Essahibi A, Benhiba L, Qaddoury A (2014) Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res 12(3):763. https://doi.org/10.5424/sjar/2014123-4815

    Article  Google Scholar 

  21. GangeAC ARL (1999) On the relation between arbuscular mycorrhizal colonization and plant benefit. Oikos 87(3):615. https://doi.org/10.2307/3546829

    Article  Google Scholar 

  22. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46(2):235–244. https://doi.org/10.1016/S0007-1536(63)80079-0

    Article  Google Scholar 

  23. Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving p nutrition of plants. In food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1570-6_15

    Google Scholar 

  24. Harborne JB (1984) Nitrogen compounds. Phytochemical methods. Springer, Dordrecht.https://doi.org/10.1007/978-94-009-5570-7_5

    Book  Google Scholar 

  25. Hinsinger Ph (2001) Bioavailability of soil inorganic p in the rhizosphere as affected by root-induced chemical changes: A Review. Plant Soil 237:173–195

    CAS  Article  Google Scholar 

  26. Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular–arbuscular mycorrhizae in the chenopodiaceae and cruciferae: do they occur? Can J Bot 56(22):2813–2817. https://doi.org/10.1139/b78-336

    Article  Google Scholar 

  27. Hoshino A, Yoshihara Y, Sasaki T et al (2009) Comparison of vegetation changes along grazing gradients with different numbers of livestock. J Arid Environ 73(6–7):687–690. https://doi.org/10.1016/J.JARIDENV.2009.01.005

    Article  Google Scholar 

  28. Jaleel ChA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008) Differential responses in water use efficiency in two varieties of catharanthus roseus under drought stress. C R Biol 331(1):42–47. https://doi.org/10.1016/J.CRVI.2007.11.003

    Article  PubMed  Google Scholar 

  29. Johnson NC (1998) Responses of salsola kali and panicum virgatum to mycorrhizal fungi, phosphorus and soil organic matter: implications for reclamation. J Appl Botany 35:86–94. https://doi.org/10.1046/j.1365-2664.1998.00277.x

    CAS  Article  Google Scholar 

  30. Kirono DGC, Kent DM, Hennessy KJ, Mpelasoka F (2011) Characteristics of australian droughts under enhanced greenhouse conditions: results from 14 global climate models. J Arid Environ 75(6):566–575. https://doi.org/10.1016/j.jaridenv.2010.12.012

    Article  Google Scholar 

  31. Klironomos JN, Hart MM, Gurney JE, Moutoglis P (2001) Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can J Bot 79:1161–1166. https://doi.org/10.1139/cjb-79-10-1161

    Article  Google Scholar 

  32. Lekberg Y, Koide RT (2014) Integrating physiological, community, evolutionary perspectives on the arbuscular mycorrhizal symbiosis. Botany 92:241–251

    CAS  Article  Google Scholar 

  33. Manivannan PC, Jaleel A, Sankar B (2007) Growth biochemical modifications and proline metabolism in helianthus annuus l. as induced by drought stress. Colloids Surf B 59(2):141–149. https://doi.org/10.1016/J.COLSURFB.2007.05.002

    CAS  Article  Google Scholar 

  34. Mcgonigles TP, Millers MH, Evans DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

    Article  Google Scholar 

  35. Mickan BS, Abbott LK, Stefanova K, Solaiman ZM (2016) Interactions between Biochar and Mycorrhizal Fungi in a Water-Stressed Agricultural Soil. Mycorrhiza 26(6):565–574. https://doi.org/10.1007/s00572-016-0693-4

    CAS  Article  PubMed  Google Scholar 

  36. Mnasri M, Janouškova M, Rydlova J, Abdelly Ch, Ghnaya T (2017) Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network. Chemosphere 171:476–484. https://doi.org/10.1016/j.chemosphere.2016.12.093

    CAS  Article  PubMed  Google Scholar 

  37. Nouri E, Moshki AR, Matinizadeh M, Zolfaghari AA, Rajaei S (2018) Symbiosis relationship between some arbuscular mycorrhizal fungi (AMF) and salsola laricina and its effect on improving plant growth parameters. Bot J Iran 19(2):130–137. https://doi.org/10.22092/botany.2019.124269.1132

    Article  Google Scholar 

  38. Ohno T, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55(3):892. https://doi.org/10.2136/sssaj1991.03615995005500030046x

    CAS  Article  Google Scholar 

  39. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158

    Article  Google Scholar 

  40. Puschel D, Rydlová J, Vosátka M (2007) Mycorrhiza influences plant community structure in succession on spoil banks. Basic Appl Ecol 8(6):510–520. https://doi.org/10.1016/j.baae.2006.09.002

    Article  Google Scholar 

  41. Puschel D, Rydlova J, Vosátka M (2008) Does the sequence of plant dominants affect mycorrhiza development in simulated succession on spoil banks? Plant Soil 302(1–2):273–282. https://doi.org/10.1007/s11104-007-9480-5

    CAS  Article  Google Scholar 

  42. R_Core_Development_Team (2018) R: A language and environment for statistical computing. r foundation for statistical computing https://www.r-project.org/

  43. Lozano R, Manuel J, Aroca R et al (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and Tomato. Plant Cell Environ 39(2):441–452. https://doi.org/10.1111/pce.12631

    CAS  Article  Google Scholar 

  44. Samarah NH, Alqudah AM, Amayreh JA, McAndrews GM (2009) The effect of late-terminal drought stress on yield components of four barley cultivars. J Agron Crop Sci 195:427–441

    Article  Google Scholar 

  45. Schinner F, Öhlinger R, Kandeler E, Margesin R (1996) Methods in soil biology. Mycorrhizal symbiosis, 3rd edn, vol 787. Academic Press, Cambridge

    Book  Google Scholar 

  46. Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5(4):308–312. https://doi.org/10.1007/BF00262137

    CAS  Article  Google Scholar 

  47. Todd SW, Hoffman MT (1999) A fence-line contrast reveals effects of heavy grazing on plant diversity and community composition in Namaqualand. South Afr Plant Ecol 142(1/2):169–178. https://doi.org/10.1023/A:1009810008982

    Article  Google Scholar 

  48. Tyagi J, Sultan E, Mishra A, Kumari M, Pudake RN (2018) The impact of AMF symbiosis in alleviating 1361 drought tolerance in field crops. In: Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration, Fourth Edition 1362. Springer, pp 211–234. https://doi.org/10.1007/978-3-319-68867-1_11

  49. Voriskova A, Jansa J, Puschel D, Vosátka M, Šmilauer P, Janoušková M (2019) Abiotic contexts consistently influence mycorrhiza functioning independently of the composition of synthetic arbuscular mycorrhizal fungal communities. Mycorrhiza. https://doi.org/10.1007/s00572-018-00878-8

    Article  PubMed  Google Scholar 

  50. Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163(4):417–425. https://doi.org/10.1016/j.jplph.2005.04.024

    CAS  Article  PubMed  Google Scholar 

  51. Wu QS, Zou YN (2017) Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-4115-0_2

    Book  Google Scholar 

  52. Yadav RS, Tarafdar JC (2001) Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biol Fertil Soils 34:140–143

    CAS  Article  Google Scholar 

  53. Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132(3):361–373. https://doi.org/10.1111/j.1469-8137.1996.tb01856.x

    CAS  Article  PubMed  Google Scholar 

  54. Zhao Y, Hongqing YU, Tao Z, Jixun G (2017) Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats. China J Arid Land 9(1):143–152. https://doi.org/10.1007/s40333-016-0027-6

    Article  Google Scholar 

  55. Zhu G, Deng L, Zhang X, Shangguan Zh (2016) Effects of grazing exclusion on plant community and soil physicochemical properties in a desert steppe on the loess plateau, China. Ecol Eng 90:372–381. https://doi.org/10.1016/J.ECOLENG.2016.02.001

    Article  Google Scholar 

Download references

Acknowledgements

A part of the work was supported by Czech Academy of Sciences (the long-term research development project no. RVO 67985939).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Matinizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Mark Brundrett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3064 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nouri, E., Matinizadeh, M., Moshki, A. et al. Arbuscular mycorrhizal fungi benefit drought-stressed Salsola laricina. Plant Ecol 221, 683–694 (2020). https://doi.org/10.1007/s11258-020-01042-z

Download citation

Keywords

  • Chenopodiaceae
  • Drought tolerance
  • Pasture
  • Phosphorus uptake