Skip to main content

Advertisement

Log in

Phylogenetic beta diversity in an upper montane Atlantic Forest along an altitudinal gradient

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Studying community phylogenies along elevation gradients can inform us about the influences of environmental conditions on the structuring communities, and therefore allow predictions on how future environmental changes may affect them. The aim of the work was to evaluate the processes that govern tree communities along an altitudinal gradient in an upper montane Atlantic Forest in the Mantiqueira Range, southeastern Brazil. To do so, we analyzed the phylogenetic structure of angiosperm tree communities in four elevations (ranging from 1500 to 2100 m) and verified if it varies significantly with altitude. We also analyzed the phylogenetic beta diversity among local angiosperm tree communities along the altitudinal gradient. Further, we evaluated the soil and temperature influences over these communities. The results showed tendency of increasing phylogenetic clustering with the elevation. We also verified that the phylogenetic lineages of the tree communities are replaced along the altitudinal gradient influenced by changes in temperature and soil, indicating phylogenetic niche conservatism. This suggest that these communities could move to higher altitudes in a global warming scenario, and that would change their species composition and abundance due to changes in soil along the altitudinal gradient. Thus, the highest areas would be threatened as they would not have higher altitude locations to migrate to. In addition, phylogenetic lineages which only occur, or occur in their large majority, at highest altitudes (i.e., Cunoniaceae and Winteraceae) would be locally extinct by the current (or future) climatic scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APG. Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1):1–20

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Soc 65(1):23–35

    Google Scholar 

  • Callaway RM, Brooker RW, Choler P et al (2002) Positive interactions among alpine plants increase with stress. Nature 417(6891):844–848

    CAS  PubMed  Google Scholar 

  • Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104(44):17430–17434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    CAS  PubMed  Google Scholar 

  • Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322(5899):258–261

    CAS  PubMed  Google Scholar 

  • Condit R, Pitman N, Leigh EG Jr et al (2002) Beta-diversity in tropical forest trees. Science 295(5555):666–669

    CAS  PubMed  Google Scholar 

  • Crisp MD, Cook LG (2012) Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol 196(3):681–694

    PubMed  Google Scholar 

  • Duarte LDS, Bergamin RS, Marcilio-Silva V, Seger GDDS, Marques MCM (2014) Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex. PLoS ONE 9(8):e105043

    PubMed Central  Google Scholar 

  • EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária (1999) Sistema Brasileiro de Classificação de Solos. EMBRAPA, Brasilia

    Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10

    Google Scholar 

  • Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, Zeileis A (2014) CAR: companion to applied regression. R package version 2.1–2. https://CRAN.R-project.org/package=car. Accessed 10 Dec 2018

  • Fukami T, Wardle DA (2005) Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proc R Soc Lond B 272(1577):2105–2115

    Google Scholar 

  • Gastauer M, Meira Neto JAA (2017) Updated angiosperm family tree for analyzing phylogenetic diversity and community structure. Acta Bot Bras 31(2):191–198

    Google Scholar 

  • Graham CH, Fine PV (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol Lett 11(12):1265–1277

    PubMed  Google Scholar 

  • Gurevitch JS, Scheiner M, Fox GA (2006) The ecology of plants, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Guy CL (2003) Freezing tolerance of plants: current understanding and selected emerging concepts. Can J Bot 81(12):1216–1223

    CAS  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163(2):192–211

    PubMed  Google Scholar 

  • Hoch G, Körner C (2012) Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob Ecol Biogeogr 21:861–871

    Google Scholar 

  • Holt RD (1996) Demographic constraints in evolution: towards unifying the evolutionary theories of senescence and niche conservatism. Evol Ecol 10:1–11

    Google Scholar 

  • Homeier J, Breckle SW, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42(2):140–148

    Google Scholar 

  • Honorio Coronado EM, Dexter KG, Pennington RT et al (2015) Phylogenetic diversity of Amazonian tree communities. Divers Distrib 21(11):1295–1307

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography, 1st edn. Princeton University Press, Princeton

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jin LS, Cadotte MW, Fortin MJ (2015) Phylogenetic turnover patterns consistent with niche conservatism in montane plant species. J Ecol 103(3):742–749

    Google Scholar 

  • Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24(12):694–701

    PubMed  Google Scholar 

  • Kassambara A, Mundt F (2017) Factoextra: extract and visualize the results of multivariate data analyses. R package version 3.5.2. https://www.CRAN.Rproject.org/package=vegan. Accessed 25 Nov 2018

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11):1463–1464

    CAS  PubMed  Google Scholar 

  • Le Saout S, Hoffmann M, Shi Y, Hughes A, Bernard C, Brooks TM, Bertzky B, Butchart SHM, Stuart SN, Badman T, Rodrigues ASL (2013) Protected areas and effective biodiversity conservation. Science 342(6160):803–805

    PubMed  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, De Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771

    CAS  PubMed  Google Scholar 

  • Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69(1):1–33

    Google Scholar 

  • Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2016) Cluster: “finding groups in data”—cluster analysis extended. R packageversion 2.0.5. https://CRAN.Rproject.org/package=cluster. Accessed 30 Aug 2018

  • Mattos JS, Morellato LPC, Camargo MGG, Batalha MA (2019) Plant phylogenetic diversity of tropical mountaintop rocky grasslands: local and regional constraints. Plant Ecol 220:1119–1129

    Google Scholar 

  • Mccain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob Ecol Biogeogr 16(1):1–13

    Google Scholar 

  • Mccain CM, Colwell RK (2011) Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol Lett 14(12):1236–1245

    PubMed  Google Scholar 

  • Mittermeier RA, Robles Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (2004) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al (2017) Vegan: community ecology package. R packageversion 2.4–2. https://cran.r-project.org/package=vegan. Accessed 19 Dec 2018

  • Pane E, Pereira SY (2005) As fontes em Itamonte, sul de Minas Gerais—uma contribuição para o entendimento das relações entre água superficial e subterrânea. Águas Subt 19(1):1–14

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Rev Ecol Syst 37(1):637–669

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    CAS  PubMed  Google Scholar 

  • Pavoine S (2016) A guide through a family of phylogenetic dissimilarity measures among sites. Oikos 125(12):1719–1732

    Google Scholar 

  • Pavoine S (2018) Adiv: Analysis of diversity. R package version 1.2–2. https://cran.r-project.org/package=adiv. Accessed 2 Jan 2019

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2016) Nlme: linear and nonlinear mixed effects models. R packageversion 3.1–128. https://www.CRAN.R-project.org/package=nlme. Accessed 13 Oct 2018

  • Pontara V, Bueno ML, Rezende VL, Oliveira-Filho AT, Gastauer M, Meira-Neto JAA (2018) Evolutionary history of campo rupestre: an approach for conservation of woody plant communities. Biodivers Conserv 27(11):2877–2896

    Google Scholar 

  • Qian H, Ricklefs RE (2007) A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol Lett 10(8):737–744

    PubMed  Google Scholar 

  • Qian H, Ricklefs RE (2012) Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecol Biogeogr 21(3):341–351

    Google Scholar 

  • Qian H, Swenson NG, Zhang J (2013) Phylogenetic beta diversity of angiosperms in North America. Global Ecol Biogeogr 22(10):1152–1161

    Google Scholar 

  • Qian H, Hao Z, Zhang J (2014) Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. J Plant Ecol 7(2):154–165

    Google Scholar 

  • Quaggio JÁ (2000) Acidez e calagem em solos tropicais, 1st edn. Instituto Agronômico, Campinas

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 8 Aug 2018

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8(2):224–239

    Google Scholar 

  • Raich JW, Russell AE, Vitousek PM (1997) Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 78(3):707–721

    Google Scholar 

  • REFLORA (2019) Lista de Espécies da Flora do Brasil. https://floradobrasil.jbrj.gov.br. Accessed 15 Jan 2019

  • Ribeiro M, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142(6):1141–1153

    Google Scholar 

  • Rosenzweig ML (1987) Habitat selection as a source of biological diversity. Evol Ecol 1:315–330

    Google Scholar 

  • Sanders NJ, Lessard J-P, Fitzpatrick MC, Dunn RR (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecol Biogeogr 16(5):640–649

    Google Scholar 

  • Segovia RA, Armesto JJ (2015) The Gondwanan legacy in South American biogeography. J Biogeography 42(2):209–217

    Google Scholar 

  • Shigyo N, Umeki K, Ohashi H, Kawada K, Hirao T (2017) Phylogenetic constraints to soil properties determine elevational diversity gradients of forest understory vegetation. Plant Ecol 218(7):821–834

    Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Syst 44:261–280

    Google Scholar 

  • Swenson NG (2011) Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS ONE 6(6):e21264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swenson NG, Erickson DL, Mi X et al (2012) Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology 93:S112–S125

    Google Scholar 

  • Wang X, Wiegand T, Swenson NG, Wolf AT, Howe RW, Hao Z, Lin F, Ye J, Yuan Z (2015) Mechanisms underlying local functional and phylogenetic beta diversity in two temperate forests. Ecology 96(4):1062–1073

    PubMed  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156(2):145–155

    PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 3(1):475–505

    Google Scholar 

  • Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58(1):193–197

    PubMed  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13(10):1310–1324

    PubMed  Google Scholar 

  • Willis CG, Halina M, Lehman C, Reich PB, Keen A, McCarthy S, Cavender-Bares J (2010) Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33(3):565–577

    Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Change Biol 13(9):1873–1887

    Google Scholar 

  • Xu J, Chen Y, Zhang L, Chai Y, Wang M, Guo Y, Li T, Yue M (2017) Using phylogeny and functional traits for assessing community assembly along environmental gradients: a deterministic process driven by elevation. Ecol Evol 7(14):5056–5069

    PubMed  PubMed Central  Google Scholar 

  • Zhang JL, Swenson NG, Chen SB, Liu XJ, Li ZS, Huang JH, Mi XC, Ma K (2013) Phylogenetic beta diversity in tropical forests: implications for the roles of geographical and environmental distance. J Syst Evol 51(1):71–85

    Google Scholar 

Download references

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Financing code 001, who supported this work by granting the doctoral scholarship to Ravi Fernandes Mariano, Carolina Njaime Mendes and Cléber Rodrigo de Souza, and through the master's scholarship to Aloysio Souza de Moura, and the postdoctoral scholarship to Vanessa Leite Rezende. The authors also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) by project funding (Edital Universal 2014, Process 459739/2014-0), the Instituto Alto-Montana da Serra Fina, the Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG), the Fundação Grupo Boticário de Proteção à Natureza, and finally the Fundo de Recuperação, Proteção e Desenvolvimento Sustentável das Bacias Hidrográficas do Estado de Minas Gerais (Fhidro). The authors also thank three anonymous reviewers and an associate editor for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Fernandes Mariano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hsiao-Hsuan Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariano, R.F., Rezende, V.L., Mendes, C.N. et al. Phylogenetic beta diversity in an upper montane Atlantic Forest along an altitudinal gradient. Plant Ecol 221, 671–682 (2020). https://doi.org/10.1007/s11258-020-01041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-020-01041-0

Keywords

Navigation