Skip to main content
Log in

Influence of environmental heterogeneity and geographic distance on beta-diversity of woody communities

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

To evaluate to what extent effects of environmental heterogeneity and geographic distance determine beta-diversity of woody communities within and among vegetation types at a basin spatial scale. The importance of two components of beta-diversity (nestedness and replacement) were also assessed. Location: Cuitzeo basin, central Mexico. The Cuitzeo basin (ca. 4000 km2) encompasses different vegetation types, among which tropical shrubland, oak forest, and oak–coniferous forest are the most important. We sampled 49 sites (0.1 ha each) across these three vegetation types. All shrubs and trees with diameter at breast height (dbh) ≥ 2.5 cm were recorded and taxonomically identified. Evidence of distance decay model (DDM) was assessed through exponential regressions of Bray–Curtis (measured with basal area) and Sørensen (measured with presence–absence) similarities as function of geographic and environmental distances among sites. Mantel analyses were performed in order to evaluate the influence of distances on similarity values. Exponential decay models of nestedness and replacement as function of distances were evaluated. Evidence supporting DDM was found, but the statistical strength depended on the vegetation type, the variable used to quantify distance, and the way similarity (BC) was measured. Overall, the effect of environmental distance variables was relatively stronger than geographic distance, suggesting that niche-related processes might be more important across the Cuitzeo basin. There is evidence that environmental heterogeneity has a greater importance on beta-diversity of woody communities within the studied basin than geographic distance. We discuss that niche scale processes are causing this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MA, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sandes NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    Article  PubMed  Google Scholar 

  • Bacaro G, Rocchini D, Duprè C, Carnesecchi F, Gori V, Chiarucci A (2012) Absence of distance decay in the similarity of plots at small extent in an urban brownfield. Community Ecol 13(1):36–44

    Article  Google Scholar 

  • Bahram M, Koljalg U, Courty PE, Diédhiou AG, Kjølle R, Põlme S, Ryberg M, Vledre V, Tedersoo L (2013) The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol 101:1335–1344

    Article  Google Scholar 

  • Bannerman JA, Shorthouse JD, Pither J, Lalonde RG (2012) Variability in the parasitoid community associated with galls of Diplolepis variabilis (Hymenoptera: Cynipidae): a test of the distance decay hypothesis. Can Entomol 144:635–644

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol Evol 4:552–557. https://doi.org/10.1111/2041-210X.12029

    Article  Google Scholar 

  • Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x

    Article  Google Scholar 

  • Baselga A, Jiménez-Valverde A, Niccolini G (2007) A multiple-site similarity measure independent of richness. Biol Lett 3:642–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F (2018). betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.1. https://CRAN.R-project.org/package=betapart

  • Brownstein G, Steel JB, Porter S, Gray A, Wilson C, Wilson PG, Wilson BJ (2012) Chance in plant communities: a new approach to its measurement using the nugget from spatial autocorrelation. J Ecol 100:987–996

    Article  Google Scholar 

  • Cavender-Bares J, Kozak K, Fine P, Kembel S (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Chang G, Jin T, Pei J, Chen X, Zhang B, Shi Z (2012) Seed dispersal of three sympatric oak species by forest rodents in the Qinling Mountains Central China. Plant Ecol 213:1633–1642. https://doi.org/10.1007/s11258-012-0118-1

    Article  Google Scholar 

  • Chapman JI, McEwan RW (2013) Spatiotemporal dynamics of a and B-diversity across topographic gradients in the herbaceous layer of an old-growth deciduous forest. Oikos 122:1679–1686

    Article  Google Scholar 

  • Chase J (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Chase JM, Myers JM (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B 366:2351–2363

    Article  Google Scholar 

  • Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S (2012) Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamrix trees across the sonoran destert. Appl Environ Microbiol 78(17):6187–6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick MC, Sanders NJ, Normand S, Svenning JC, Ferrier S, Gove AD, Dunn RR (2014) Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc R Soc B 280:1–8

    Google Scholar 

  • Gilbert B, Lechowicz MJ (2004) Neutrality, niches and dispersal in a temperate forest understorey. Proc Natl Acad Sci USA 101(20):7651–7656

    Article  CAS  PubMed  Google Scholar 

  • Gómez J, Puerta-Piñero C, Schupp E (2005) Effectiveness of rodents as local seed dispersers of Holm oaks. Oecologia 155:529–537. https://doi.org/10.1007/s00442-007-0928-3

    Article  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22(7):1–19

    Article  Google Scholar 

  • Guèze M, Paneque-Gálvez J, Luz AC, Pino J, Orta-Martínez M, Reyes-García V, Macía MJ (2013) Determinants of tree species turnover in a southern amazonian rain forest. J Veg Sci 24:284–295

    Article  Google Scholar 

  • Harrison S, Ross SJ, Lawton JH (1992) Beta-diversity on geographic gradients in Britain. J Anim Ecol 61:151–158

    Article  Google Scholar 

  • Hubbell SP (2001) The unified theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Jones MM, Tuomitso H, Clarck DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195

    Article  CAS  Google Scholar 

  • Kristiansen T, Svenning JC, Eisenhardt WL, Pedersen D, Brix H, Kristiansen SM, Knadel M, Grández C, Balslev H (2012) Environment versus dispersal in the assembly of western Amazonian palm communities. J Biogeogr 39:1318–1332

    Article  Google Scholar 

  • Leal-Nares O, Mendoza M, Carranza E (2010) Spatial analysis and modeling of climate variables in the Cuitzeo Basin México. Investigaciones Geográficas Boletín del Instituto de Geografía UNAM 72:49–67

    Google Scholar 

  • López-Martínez JO, Hernández-Stefanoni JL, Dupuy JM, Meave JA (2013) Partitioning the variation of woody plant B-diversity in a landscape of secondary tropical dry forests across spatial scales. J Veg Sci 24:33–45

    Article  Google Scholar 

  • Martínez, P (2017) pairwiseAdonis: pairwise multilevel comparison using Adonis R package version 001. https://www.githubcom/pmartinezarbizu/pairwiseAdonis

  • Maza-Villalobos S, Macedo-Santana F, Rodríguez-Velázquez J, Oyama K, Martínez-Ramos M (2014) Variación de la estructura y composición de comunidades de árboles y arbustos entre tipos de vegetación en la Cuenca de Cuitzeo Michoacán. Bot Sci 92(2):243–258

    Article  Google Scholar 

  • Mendoza M, López-Granados E, Geneleti D, Pérez-Salicrup D, Salinas V (2011) Analysing land cover and land use change processes at watershed level: a multitemporal study in the lake Cuitzeo watershed Mexico (1975-2003). Appl Geogr 31:237–250

    Article  Google Scholar 

  • Meynard CN, Lavergne S, Boulangeat I, Garraud L, Van Es J, Mouquet N, Thuillier W (2013) Disentangling the drivers of metacommunity structure across spatial scales. J Biogoegr 40:1560–1571

    Article  Google Scholar 

  • Mikulyuk A, Sharma S, Van Egeren S, Erdmann E, Nault ME, Hauxwell J (2011) The relative role of environmental spatial and land-use patterns in explaining aquatic macrophyte community composition. Can J Fish Aquat Sci 68:1778–1789

    Article  Google Scholar 

  • Nekola JC, White PS (1999) Distance decay of similarity in biogeography and ecology. J Biogoegr 26:867–878

    Article  Google Scholar 

  • Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner E (2018) vegan: Community Ecology Package R package version 25-1. https://www.CRANR-projectorg/package=vegan

  • Qian H, Shimono A (2012) Effects of geographic distance and climatic dissimilarity on species turnover in alpine meadows communities across a broad spatial extent on the Tibetan Plateau. Plant Ecol 213:1357–1364

    Article  Google Scholar 

  • Rodrigues JL, Pellizari VH, Mueller R, Baek K, Jesus EC, Paula FS, Mirza B, Hamaoui GS Jr, Tsai SM, Feigl B, Tiedje JM, Bohannan BJM, Nüsslein K (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. PNAS 110(3):988–993

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Masaki T, Tanaka H, Niiyama K, Iida S, Abe S, Nakashizuka T (2010) Effects of abiotic and biotic factors and stochasticity on tree regeneration in a temperate forest community. Ecoscience 17(2):137–145

    Article  Google Scholar 

  • Siefert A, Ravenscroft C, Weiser MD, Swenson NG (2013) Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Glob Ecol Biogeogr 22:682–691

    Article  Google Scholar 

  • Soininen J, Mcdonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12

    Article  Google Scholar 

  • Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2006) Environment dispersal and patterns of species similarity. J Biogeogr 33:1044–1054

    Article  Google Scholar 

  • Swenson NG, Anglada-Cordero P, Barone JA (2011) Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc R Soc B 278:877–884

    Article  PubMed  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing R Foundation for Statistical Computing. Vienna Austria. https://www.R-projectorg/

  • Thuille A, Laufer J, Hohl C, Gleixner G (2015) Carbon quality affects the nitrogen partitioning between plants and soil microorganisms. Soil Biol 81:266–274

    Article  CAS  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal environment and floristic variation of western Amazonian Forests. Science 299(10):241–244

    Article  CAS  PubMed  Google Scholar 

  • van der Gast C, Gosling P, Tiwari B, Bending GD (2011) Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13(1):241–249

    Article  PubMed  Google Scholar 

  • Vellend M, Verheyen K, Flinn KM, Jacquemyn H, van Kolb A, Calster H, Peterken G, Graae BJ, Bellemare J, Honnay O, Brunet J, Wulf M, Gerhardt F, Hermy M (2007) Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J Ecol 95:565–573

    Article  Google Scholar 

  • Vormistos J, Svenning JC, Hall P, Balslev H (2004) Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon. J Ecol 92:577–588

    Article  Google Scholar 

  • Wagner S, Collet C, Madsen P, Nakashizuka T, Nyland R, Sagheb-Talebi K (2010) Beech regeneration research: from ecological to silvicultural aspects. For Ecol Manag 259:2172–2182

    Article  Google Scholar 

  • Wang X, Wiegand T, Wolf A, Howe R, Davies SJ, Hao Z (2011) Spatial patterns of tree species richness in two temperate forests. J Ecol 99:1382–1393

    Article  Google Scholar 

  • Werner Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17. https://doi.org/10.1111/j.1600-0706.2008.17053.x

    Article  Google Scholar 

  • Zinger L, Boetius A, Ramette A (2014) Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol 23:954–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Rodrigo Velázquez Durán (Biogeochemistry laboratory, IIES UNAM) performed soil chemical analysis. Lorena Alvarado, Santiago Arizaga-Pérez, Juan Martínez-Cruz, Miguel A. Pérez-Pérez, Sandra Quijas, and Jorge Rodríguez-Velázquez e Ignacio Torres helped on field work. Financial support by Universidad Nacional Autónoma de México Macro-project “Ecosystem Management and Human Development.” All the authors declare that they do not have conflict of interest of any sort related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Vega.

Additional information

Communicated by Thomas A. Nagel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14 kb) ESM1. Environmental variables used.

Supplementary material 2 (XLSX 16 kb) ESM2. Tree species list.

Supplementary material 3 (XLSX 12 kb) ESM3. Average distances (UTM units) between sites.

Supplementary material 4 (DOCX 2961 kb) ESM4. Results of environmental PCA.

11258_2020_1036_MOESM5_ESM.tif

Supplementary material 5 (TIFF 21093 kb) ESM5. Exponential decay model of nestedness (black color) and replacement (gray color) values quantified with incidence data as function of geographic or environmental distances in three vegetation types in a basin in central Mexico. Gray points are observed BC values. solid lines are fitted models (PSeudoR2 and p-values are in table 5). OF: oak forest; TS: tropical shrubland; OPF: oak-pine forest. ALL: all vegetation types combined. avgT: average temperature. cT: temperature of the coldest month. dP: rainfall of the driest month. gD: geographic distance. hT: temperature of the hottest month. KgC: carbon soil content. masl: altitude in meters. mmP: total rainfall. pca1, pca2: first and second axes of a PCA with all standardized variables. sd: soil depth. sdP: standard deviation of rainfall. wP: rainfall of the wettest month.

11258_2020_1036_MOESM6_ESM.tif

Supplementary material 6 (TIFF 21093 kb) ESM6. Exponential decay model of abundance gradient (black color) and balanced variation (gray color) values quantified with basal area data as function of geographic or environmental distances in three vegetation types in a basin in central Mexico. Gray points are observed BC values. Solid lines are fitted models (PSeudoR2 and p-values are on table 6). OF: oak forest; TS: tropical shrubland; OPF: oak-pine forest. ALL: all vegetation types combined. avgT: average temperature. cT: temperature of the coldest month. dP: rainfall of the driest month. gD: geographic distance. hT: temperature of the hottest month. KgC: carbon soil content. masl: altitude in meters. mmP: total rainfall. pca1, pca2: first and second axes of a PCA with all standardized variables. sd: soil depth. sdP: standard deviation of rainfall. wP: rainfall of the wettest month.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, E., Martínez-Ramos, M., García-Oliva, F. et al. Influence of environmental heterogeneity and geographic distance on beta-diversity of woody communities. Plant Ecol 221, 595–614 (2020). https://doi.org/10.1007/s11258-020-01036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-020-01036-x

Keywords

Navigation