Skip to main content

Dispersal ability of threatened species affects future distributions

Abstract

To track future climate space, seed dispersal will be essential for plants, but dispersal ability is rarely measured or incorporated into species distribution models. Species distribution models (SDMs) can rank habitat suitability at a local scale, and they may be a valuable conservation planning tool for rare, patchily distributed species. Dispersal is essential for species to survive the threats of habitat destruction and climate change. Combining dispersal ability and habitat suitability at the landscape scale is important to understand and predict species spatial responses to environmental change. This study analyzed future species distributions based on habitat suitability and dispersal scenarios for 7 endangered and vulnerable taxa, using SDM and dispersal ability to predict the range of species distribution across central Italy in the near future 2050. Species distribution models (Ensembles of Small Models, ESMs) were carried out using 19 bioclimatic environmental variables downloaded from WorldClim 1.4. The study identified the most suitable area for this species in the central Apennines. The innovation of this study is the combination of SDMs with dispersal ability based on measured traits of local populations of rare species and subspecies. The main results show a combination of climate change with dispersal ability strongly affects the future potential distribution of the rare species. Thus, obtaining suitable and accessible areas in the near future possible is possible to identify the high suitable sites for the reinforcement of the natural population, ensuring habitat connectivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Augspurger CK (1986) Morphology and dispersal potential of wind-dispersed diaspores of neotropical trees. Am J Bot 73:353–363

    Article  Google Scholar 

  • Barcikowska MJ, Kapnick SB, Feser F (2018) Impact of large-scale circulation changes in the North Atlantic sector on the current and future Mediterranean winter hydroclimate. Clim Dyn 50:2039–2059

    Article  Google Scholar 

  • Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi N, Astuti G, Bacchetta G, Ballelli S, Banfi E (2018) An updated checklist of the vascular flora native to Italy. Plant Biosyst 152:179–303

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Bevill R, Louda S (1999) Comparisons of related rare and common species in the study of plant rarity. Conserv Biol 13:493–498

    Article  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M (2012) Costs of dispersal. Biol Rev 87:290–312

    Article  PubMed  Google Scholar 

  • Boulangeat I, Gravel D, Thuiller W (2012) Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol Lett 15:584–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandt LA, Benscoter AM, Harvey R, Speroterra C, Bucklin D, Romañach SS, Watling JI, Mazzotti FJ (2017) Comparison of climate envelope models developed using expert-selected variables versus statistical selection. Ecol Model 345:10–20

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiner FT, Guisan A, Bergamini A, Nobis MP (2015) Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol Evol 6:1210–1218

    Article  Google Scholar 

  • Breiner FT, Nobis MP, Bergamini A, Guisan A (2018) Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol Evol 9:802–808

    Article  Google Scholar 

  • Broeck AV, Van Landuyt W, Cox K, De Bruyn L, Gyselings R, Oostermeijer G, Valentin B, Bozic G, Dolinar B, Illyés Z (2014) High levels of effective long-distance dispersal may blur ecotypic divergence in a rare terrestrial orchid. BMC Ecol 14:20

    Article  Google Scholar 

  • Brzosko E, Ostrowiecka B, Kotowicz J, Bolesta M, Gromotowicz A, Gromotowicz M, Orzechowska A, OrzoÅ‚ek J, Wojdalska M (2017) Seed dispersal in six species of terrestrial orchids in Biebrza National Park (NE Poland). Acta Soc Bot Pol 86:3557

    Article  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Caplat P, Nathan R, Buckley YM (2012) Seed terminal velocity, wind turbulence, and demography drive the spread of an invasive tree in an analytical model. Ecology 93:368–377

    Article  PubMed  Google Scholar 

  • Cerasoli F, Iannella M, D’Alessandro P, Biondi M (2017) Comparing pseudo-absences generation techniques in Boosted Regression Trees models for conservation purposes: a case study on amphibians in a protected area. PLoS ONE 12:e0187589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers JM, Freeny AE, Heiberger RM (1992) Analysis of variance: designed experiments, in /statistical models in S/. In: Chambers JM, Hastie TJ (eds) Wadsworth and brooks/cole advanced books and software. Pacific Grove, California

    Google Scholar 

  • Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA, Lewis M, Lynch J, Pacala S, Prentice C (1998) Reid's paradox of rapid plant migration: dispersal theory and interpretation of paleoecological records. Bioscience 48:13–24

    Article  Google Scholar 

  • Corlett RT, Westcott DA (2013) Will plant movements keep up with climate change? Trends Ecol Evol 28:482–488

    Article  PubMed  Google Scholar 

  • Damschen EI, Baker DV, Bohrer G, Nathan R, Orrock JL, Turner JR, Brudvig LA, Haddad NM, Levey DJ, Tewksbury JJ (2014) How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc Natl Acad Sci USA 111(9):3484–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cecco V, Di Musciano M, Gratani L, Catoni R, Di Martino L, Frattaroli AR (2017a) Seed germination and conservation of two endemic species from Central Apennines (Italy). Plant Sociol 54:53–59

    Google Scholar 

  • Di Cecco V, Paura B, Bufano A, Di Santo P, Di Martino L, Frattaroli A (2017b) Analysis of diaspore morphology and seed germination in Bubon macedonicum L., a rare species in Italy. Plant Biosyst 152:738–748

    Article  Google Scholar 

  • Di Cecco V, Di Musciano M, D'Archivio A, Frattaroli A, Di Martino L (2018) Analysis of intraspecific seeds diversity in Astragalus aquilanus (Fabaceae) endemic species of Central Apennine. Plant Biol 21:507–514

    Article  CAS  PubMed  Google Scholar 

  • Di Cecco V, Di Musciano M, Frattaroli AR, Di Martino L (2019) Seed ecology of Saxifraga italica: effects of light, temperature and gibberellic acid. Folia Geobot 54:139–150

    Article  Google Scholar 

  • Di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A (2017) Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40:774–787

    Article  Google Scholar 

  • Di Musciano M, Carranza M, Frate L, Di Cecco V, Di Martino L, Frattaroli A, Stanisci A (2018) Distribution of plant species and dispersal traits along environmental gradients in central Mediterranean Summits. Diversity 10:58

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Engler R, Randin CF, Vittoz P, Czáka T, Beniston M, Zimmermann NE, Guisan A (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32:34–45

    Article  Google Scholar 

  • Eriksson O (2000) Seed dispersal and colonization ability of plants—assessment and implications for conservation. Folia Geobot 35:115–123

    Article  Google Scholar 

  • Falcucci A, Maiorano L, Boitani L (2007) Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc Ecol 22(4):617–631

    Article  Google Scholar 

  • Ficetola GF, Rondinini C, Bonardi A, Baisero D, Padoa-Schioppa E (2015) Habitat availability for amphibians and extinction threat: a global analysis. Divers Distrib 21:302–311

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fois M, Cuena-Lombrana A, Fenu G, Cogoni D, Bacchetta G (2016) The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. J Nat Conserv 33:1–9

    Article  Google Scholar 

  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frattaroli AR, Di Martino L, Di Cecco V, Catoni R, Varone L, Di Santo M, Gratani L (2013) Seed germination capability of four endemic species in the Central Apennines in Italy: relationship between seed size and germination capability. Lazaroa 34:43–53

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Gómez-Noguez F, León-Rossano LM, Mehltreter K, Orozco-Segovia A, Rosas-Pérez I, Pérez-García B (2017) Experimental measurements of terminal velocity of fern spores. Am Fern J 107:59–71

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  PubMed  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Heydel F, Cunze S, Bernhardt-Römermann M, Tackenberg O (2014) Long-distance seed dispersal by wind: disentangling the effects of species traits, vegetation types, vertical turbulence and wind speed. Ecol Res 29:641–651

    Article  Google Scholar 

  • Hijmans R, Elith J (2016) dismo: species distribution modeling R package, Version 1.1-4. https://CRAN.R-project.org/package=dismo

  • Hintze C, Heydel F, Hoppe C, Cunze S, König A, Tackenberg O (2013) D3: the dispersal and diaspore database–baseline data and statistics on seed dispersal. Perspect Plant Ecol Evol Syst 15:180–192

    Article  Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228

    Article  Google Scholar 

  • Iannella M, Cerasoli F, Biondi M (2017) Unraveling climate influences on the distribution of the parapatric newts Lissotriton vulgaris meridionalis and L. italicus. Front Zool 14:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Iannella M, Cerasoli F, D’Alessandro P, Console G, Biondi M (2018) Coupling GIS spatial analysis and Ensemble Niche Modelling to investigate climate change-related threats to the Sicilian pond turtle Emys trinacris, an endangered species from the Mediterranean. PeerJ 6:e4969

    Article  PubMed  PubMed Central  Google Scholar 

  • ISTA (2012) International rules for seed testing. International Seed Testing Association (ISTA), Bassersdorf

  • Kaky E, Gilbert F (2016) Using species distribution models to assess the importance of Egypt's protected areas for the conservation of medicinal plants. J Arid Environ 135:140–146

    Article  Google Scholar 

  • Kleyer M, Bekker R, Knevel I, Bakker J, Thompson K, Sonnenschein M, Poschlod P, Van Groenendael J, KlimeÅ¡ L, KlimeÅ¡ová J (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042

    Article  Google Scholar 

  • Leathwick J, Rowe D, Richardson J, Elith J, Hastie T (2005) Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshw Biol 50:2034–2052

    Article  Google Scholar 

  • Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst 34:575–604

    Article  Google Scholar 

  • Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789

    Article  Google Scholar 

  • Lorts CM, Briggeman T (2008) Evolution of fruit types and seed dispersal: a phylogenetic and ecological snapshot. J Syst Evol 46:396–404

    Google Scholar 

  • Lorts CM, Briggeman T, Sang T (2008) Evolution of fruit types and seed dispersal: a phylogenetic and ecological snapshot. J Syst Evol 46:396–404

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38(5):921–931

    Article  Google Scholar 

  • Matlack GR (1987) Diaspore size, shape, and fall behavior in wind-dispersed plant species. Am J Bot 74:1150–1160

    Article  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma M, Lamarque J-F, Matsumoto K, Montzka S, Raper S, Riahi K (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213

    Article  CAS  Google Scholar 

  • Morgan J, Venn S (2017) Alpine plant species have limited capacity for long-distance seed dispersal. Plant Ecol 218:813–819

    Article  Google Scholar 

  • Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788

    Article  CAS  PubMed  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 105:19052–19059

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsenigo S, Montagnani C, Fenu G, Gargano D, Peruzzi L, Abeli T, Alessandrini A, Bacchetta G, Bartolucci F, Bovio M (2018) Red Listing plants under full national responsibility: extinction risk and threats in the vascular flora endemic to Italy. Biol Conserv 224:213–222

    Article  Google Scholar 

  • Pärtel M, Zobel M (2007) Dispersal limitation may result in the unimodal productivity-diversity relationship: a new explanation for a general pattern. J Ecol 95:90–94

    Article  Google Scholar 

  • Peruzzi L, Conti F, Bartolucci F (2014) An inventory of vascular plants endemic to Italy. Phytotaxa 168:1–75

    Article  Google Scholar 

  • Pignatti S (1982) Flora d'italia. Edagricole, Bologna

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Renton M, Shackelford N, Standish RJ (2012) Habitat restoration will help some functional plant types persist under climate change in fragmented landscapes. Glob Change Biol 18:2057–2070

    Article  Google Scholar 

  • Scherrer D, D'Amen M, Fernandes RF, Mateo RG, Guisan A (2018) How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods Ecol Evol 9:2155–2166

    Article  Google Scholar 

  • Soons MB, Ozinga WA (2005) How important is long-distance seed dispersal for the regional survival of plant species? Divers Distrib 11:165–172

    Article  Google Scholar 

  • Stocker T (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Stralberg D, Matsuoka S, Hamann A, Bayne E, Sólymos P, Schmiegelow F, Wang X, Cumming S, Song S (2015) Projecting boreal bird responses to climate change: the signal exceeds the noise. Ecol Appl 25:52–69

    Article  CAS  PubMed  Google Scholar 

  • Tamme R, Götzenberger L, Zobel M, Bullock JM, Hooftman DA, Kaasik A, Pärtel M (2014) Predicting species' maximum dispersal distances from simple plant traits. Ecology 95:505–513

    Article  PubMed  Google Scholar 

  • Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R, Breiner F, Georges MD, Thuiller CW (2016) Package ‘biomod2’, Version 3.3-7

  • Tison J-M, de Foucault B (2014) Flora gallica: flore de France. Biotope, Mèze

    Google Scholar 

  • Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181

    Article  Google Scholar 

  • Treep J, de Jager M, Kuiper LS, Duman T, Katul GG, Soons MB (2018) Costs and benefits of non-random seed release for long-distance dispersal in wind-dispersed plant species. Oikos. https://doi.org/10.1111/oik.04430

    Article  Google Scholar 

  • Tremlová K, Münzbergová Z (2007) Importance of species traits for species distribution in fragmented landscapes. Ecology 88:965–977

    Article  PubMed  Google Scholar 

  • Tutin T, Heywood V, Burges N, Moore D, Valentine D, Walters S, Webb D (1964) 1980—Flora Europaea, vols 1–5. Cambridge University Press, Cambridge.

  • Vittoz P, Engler R (2007) Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot Helv 117:109–124

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T (2011) MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845

    Article  Google Scholar 

  • Webb CJ (1998) The selection of pollen and seed dispersal in plants. Plant Species Biol 13:57–67

    Article  Google Scholar 

  • Willson M (1993) Dispersal mode, seed shadows, and colonization patterns. In: Frugivory and seed dispersal: ecological and evolutionary aspects. Springer, Cham, pp 261–280

    Chapter  Google Scholar 

  • Wright SJ, Trakhtenbrot A, Bohrer G, Detto M, Katul GG, Horvitz N, Muller-Landau HC, Jones FA, Nathan R (2008) Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions. Proc Natl Acad Sci USA 105:19084–19089

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Song L, Li W, Wang Z, Zhang H, Xin X, Zhang Y, Zhang L, Li J, Wu F (2014) An overview of BCC climate system model development and application for climate change studies. J Meteorol Res 28:34–56

    Google Scholar 

  • Zotz G, Weichgrebe T, Happatz H, Einzmann HJ (2016) Measuring the terminal velocity of tiny diaspores. Seed Sci Res 26(3):222–230

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Life Floranet (LIFE15 NAT/IT/000946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter Di Cecco.

Additional information

Communicated by Timothy Bell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11258_2020_1009_MOESM1_ESM.zip

Supplementary material 1: Histograms plots for the habitat suitability of the presence points for each species both for current and future prediction (ZIP 4413 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Musciano, M., Di Cecco, V., Bartolucci, F. et al. Dispersal ability of threatened species affects future distributions. Plant Ecol 221, 265–281 (2020). https://doi.org/10.1007/s11258-020-01009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-020-01009-0

Keywords