Skip to main content

Advertisement

Log in

Temperature shapes liana diversity pattern along a latitudinal gradient in southern temperate rainforest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The decrease in liana diversity with increasing latitude has been indicated as the major physiognomic difference between tropical and temperate forests’ ecosystem. Despite the robustness of this pattern, there is contrasting evidence about the environmental factors that model it. Here we evaluate the role of temperature, precipitation, soil fertility, and their interaction, over the richness and abundance pattern of liana species in a latitudinal gradient in the southern temperate rainforest. The study was carried out in the temperate rainforest of South America, in a latitudinal gradient from 37.4° S to 45.2° S encompassing 932 km. On this gradient, we select six study sites, with a total of 48 plots of 225 m2 each. In each site, we recorded species richness and abundance of lianas, temperature, precipitation, and soil nutrition. We use lineal models and AIC models to evaluate the relation between diversity and environmental factors. Liana diversity strongly declines with increasing latitude on the southern temperate rainforest. This result is consequence of the latitudinal decrease in liana species richness, but not a decrease in their abundance over latitude. The decrease in species richness was correlated with the reduction in temperature (mean minimum temperature, absolute minimum temperature, and number of frost events), and with no other environmental factors (precipitation, seasonality, or soil fertility) or their interaction. Our results support the hypothesis that cold intolerance is the key factor shaping the global pattern of liana diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balfour DA, Bond WJ (1993) Factors limiting climber distribution and abundance in a southern African forest. J Ecol 93–100

    Article  Google Scholar 

  • Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob Ecol Biogeogr 12(4):327–340

    Article  Google Scholar 

  • Brown JH, Lomolino MV (1998) Biogeography. Sinauer, Sunderland, pp 1–624

    Google Scholar 

  • Chave J, Riéra B, Dubois MA (2001) Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. J Trop Ecol 17(01):79–96

    Article  Google Scholar 

  • Davis S, Sperry J, Hacke U (1999) The relationship between xylem and cavitation caused by freezing. Am J Bot 86:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • DeWalt SJ, Chave J (2004) Structure and biomass of four lowland neotropical forests. Biotropica 36:7–19

    Google Scholar 

  • Dewalt SJ, Schnitzer SA, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. J Trop Ecol 16(1):1–19

    Article  Google Scholar 

  • DeWalt SJ, Ickes K, Nilus R et al (2006) Liana habitat associations and community structure in a Bornean lowland tropical forest. Plant Ecol 186:203–216

    Article  Google Scholar 

  • DeWalt SJ, Schnitzer SA, Chave J, Bongers F, Burnham RJ, Cai Z et al (2010) Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42(3):309–317

    Article  Google Scholar 

  • DeWalt SJ, Schnitzer SA, Alves LF, Bongers F, Burnham RJ, Cai Z, et al (2015) Biogeographical patterns of liana abundance and diversity. Ecol Lianas 131–146

  • di Castri F, Hajek ER (1976) Bioclimatología de Chile. Vicerrectoría Académica de la Universidad Católica de Chile, Santiago, p 128

    Google Scholar 

  • Donoso C (1997) Ecología Forestal. El Bosque y su Medio Ambiente. 5ta.Universitaria. Santiago de Chile

  • Durigon J, Durán SM, Gianoli E (2013) Global distribution of root climbers is positively associated with precipitation and negatively associated with seasonality. J Trop Ecol 29(04):357–360

    Article  Google Scholar 

  • Ewers FW, Fisher JB (1991) Why vines have narrow stems: histological trends in Bahuinia (Fabaceae). Oecologia 8:233–237

    Article  Google Scholar 

  • Ewers FW, Cochard H, Tyree MT (1997) A survey of root pressures in vines of a tropical lowland forest. Oecologia 110(2):191–196

    Article  PubMed  Google Scholar 

  • Gartner B, Bullock S, Mooney H, Brown B, Whitbeck J (1990) Water transport of vine and tree stems in tropical deciduous forest. Am J Bot 77:742–749

    Article  Google Scholar 

  • Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 1–34

    Article  Google Scholar 

  • Gentry AH (1991) The distribution and evolution of climbing plants. In Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 3, 49

  • Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt SJ et al (2006) A standard protocol for Liana Censuses1. Biotropica 38(2):256–261

    Article  Google Scholar 

  • Godoy R, Valenzuela E, Guevara G, Boy J, Barrientos M, Matus F (2014) Biogeoquimica en los Bosques Templados del Sur de Chile. In: Donoso C, Gonzalez M, Lara A (eds) Ecología Forestal: Bases para el manejo sustentable y conservacion de los bosques nativos de Chile. Universidad Austral de Chile

  • Hegarty EE, Caballe G (1991) Distribution and abundance of vines in forest communities. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 313–335

    Google Scholar 

  • Hu L, Li M, Li Z (2010) Geographical and environmental gradients of lianas and vines in China. Glob Ecol Biogeogr 19(4):554–561

    Google Scholar 

  • Isnard S, Silk WK (2009) Moving with climbing plants from Charles Darwin ‘s time into the 21st century. Am J Bot 96:1205–1221

    Article  PubMed  Google Scholar 

  • Jiménez-Castillo M, Lusk CH (2013) Vascular performance of woody plants in a temperate rain forest: lianas suffer higher levels of freeze–thaw embolism than associated trees. Funct Ecol 27(2):403–412

    Article  Google Scholar 

  • Jiménez-Castillo M, Wiser SK, Lusk CH (2007) Elevational parallels of latitudinal variation in the proportion of lianas in woody floras. J Biogeogr 34:163–168

    Article  Google Scholar 

  • Jordan CF, Herrera R (1981) Tropical rain forests: are nutrients really critical? American Naturalist 167–180

    Article  CAS  Google Scholar 

  • Laurance WF, Pérez-Salicrup D, Delamônica P, Fearnside PM, D’Angelo S, Jerozolinski A et al (2001) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82(1):105–116

    Article  Google Scholar 

  • Lehmann J, Schroth G (2003) Nutrient leaching. trees, crops and soil fertility. CABI Publishing, Wallingford 151–166

  • Luzio W, Alcayaga S (1992) Mapa de asociaciones de grandes grupos de suelos de Chile. Agric Técnica 52(4):347–353

    Google Scholar 

  • Macía MJ, Ruokolainen K, Tuomisto H et al (2007) Congruence between floristic patterns of trees and lianas in a southwest Amazonian rain forest. Ecography 30:561–577

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. African Journal of Aquatic Science 29(2):285–286

    Article  Google Scholar 

  • Malizia A, Grau HR, Lichstein JW (2010) Soil phosphorus and disturbance influence liana communities in a subtropical montane forest. J Veg Sci 21(3):551–560

    Article  Google Scholar 

  • Molina-Freaner F, Gámez RC, Tinoco-Ojanguren C, Castellanos AE (2004) Vine species diversity across environmental gradients in northwestern Mexico. Biodivers Conserv 13(10):1853–1874

    Article  Google Scholar 

  • Muñoz AA, Chacón P, Pérez F, Barnert ES, Armesto JJ (2003) Diversity and host tree preferences of vascular epiphytes and vines in a temperate rainforest in southern Chile. Aust J Bot 51(4):381–391

    Article  Google Scholar 

  • Parthasarathy N, Muthuramkumar S, Reddy MS (2004) Patterns of liana diversity in tropical evergreen forests of peninsular India. For Ecol Manag 190(1):15–31

    Article  Google Scholar 

  • Phillips OL, Miller JS (2002) Global patterns of plant diversity: Alwyn H. Gentry’s Forest Transect Data Set. Missouri Botanical Garden, St. Louis, MO

    Google Scholar 

  • Putz FE, Chai P (1987) Ecological studies of lianas in Lambir national park, Sarawak, Malaysia. J Ecol 523–531

    Article  Google Scholar 

  • Putz FE, Mooney HA (1991) The biology of vines. Cambridge University Press, Cambridge

    Google Scholar 

  • Richards PW (1996) The tropical rain forest (2nd edn). Cambridge University Press, Cambridge

    Google Scholar 

  • Sadzawka A, Carrasco MA, Grez R, Mora ML, Flores H, Neaman A (2004) Métodos de análisis recomendados para los suelos chilenos.Comisión de Normalización y Acreditación. Sociedad Chilena de la Ciencia del Suelo, Santiago, Chile

  • Schlatter J, Grez R, Gerding V (2003) Manual para el reconocimiento de suelos. Universidad Austral de Chile, Valdivia

    Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166(2):262–276

    Article  PubMed  Google Scholar 

  • Schnitzer SA (2018) Testing ecological theory with lianas. New Phytol 220(2):366–380. https://doi.org/10.1111/nph.15431

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17(5):223–230

    Article  Google Scholar 

  • Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14(4):397–406

    Article  PubMed  Google Scholar 

  • Schnitzler SA, Amigo J, Hale B, Schnitzler C (2016) Patterns of climber distribution in temperate forests of the Americas. J Plant Ecol rtw012

  • Sperry JS, Holbrook NM, Zimmerman MH, Tyree MT (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol 83:414–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Heijden GM, Phillips OL (2008) What controls liana success in Neotropical forests? Glob Ecol Biogeogr 17(3):372–383

    Article  Google Scholar 

  • Vázquez JA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J Ecol 96:999–1020

    Google Scholar 

  • Whittaker RH, Levin SA (eds) (1975) Niche: theory and application. Stroudsburg: Dowden, Hutchinson & Ross

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evolut Syst 273–309

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Consuelo Ruiz, Isabella Aguilera, Daniela Cosimo, Pedro Jara, Jessica Winkler, Carolina Poveda, Marina Jiménez, and Camila Tejo for the valuable help with fieldwork. We are thankful to the reviewers for their helpful suggestions, and also to Corporación Nacional Forestal (CONAF) and Bosques Arauco for authorizing access to the study sites.

Funding

This work was supported by the Comisión Nacional de Investigación Científica y Tecnológica (Doctoral Research Grant Number 21110389 for PLC) and Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 1130898 to MJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Lobos-Catalán.

Additional information

Communicated by Bradley J. Butterfield.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobos-Catalán, P., Jiménez-Castillo, M. Temperature shapes liana diversity pattern along a latitudinal gradient in southern temperate rainforest. Plant Ecol 220, 1109–1117 (2019). https://doi.org/10.1007/s11258-019-00980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-019-00980-7

Keywords

Navigation