Skip to main content

Advertisement

Log in

Riparian and adjacent forests differ both in the humid mountainous ecoregion and the semiarid lowland

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Few studies have quantified changes in riparian and adjacent forest across landscape units. In this study, the composition and structure of riparian and adjacent forest were compared in a humid and a semiarid ecoregion in northwestern Argentina: the Yungas forest and the Western Chaco. We expected that differences between riparian and adjacent zones could be less marked in humid than in semiarid regions. Ten sites were surveyed with a block design. An Importance Value Index, Rank-Abundance curves, and Analysis of Similarity and multivariate analyzes (NMDS) were performed to evaluate differences between forests. Stream and floodplain widths, lateral, and longitudinal slopes of streamside were analyzed by a principal components analysis (PCA). NMDS and PCA axes were correlated to analyze the relations among physical and biological arrangements. Results revealed that riparian forest may be very different from the adjacent in both ecoregions. Marked differences in geomorphological and physical features of streamsides were found between ecoregions and they were strongly associated with assemblage distribution. In Yungas forest, dominant species were different at all sites, according to the altitudinal stratification of this region. Within Western Chaco the species Salix humboldtiana Willd. and Tessaria integrifolia Ruiz and Pav., were commonly dominant in riparian sectors. The dominance of these species in both sectors by the widest rivers could indicate that the dimensions of the riparian zone in those sites are greater than those by the smaller streams. Our study reinforced the concept of riparian zones as dynamic ecosystems and we propose considering a landscape perspective in managerial decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47:761–776

    Article  Google Scholar 

  • Amoros C, Roux AL, Reygrobeller JL, Bravard JP, Pautou C (1987) A method for applied ecological studies of fluvial hydrosystems. Regulat Rivers 1:17–38

    Article  Google Scholar 

  • Andresen E (2005) Effects of season and vegetation type on community organization of dung beetles in a tropical dry forest. Biotropica 37:291–300

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Brinson MM (1990) Riverine forests. In: Lugo AE, Brinson MM, Brown SL (eds) Forested wetlands. Ecosystems of the world, Elsevier, Amsterdam, pp 87–141

    Google Scholar 

  • Brown AD (2000) Development threats to biodiversity and opportunities for conservation in the mountain ranges of the upper Bermejo river basin, NW Argentina and SW Bolivia. Ambio 29:445–449

    Article  Google Scholar 

  • Brown AD, Pacheco S (2006) Propuesta de actualización del mapa ecorregional de la Argentina. In: Brown A, Martínez Ortiz U, Acerbi M, Corcuera J (eds) La situación ambiental argentina 2005. Fundación Vida Silvestre, Buenos Aires, pp 28–31

    Google Scholar 

  • Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kapelle M, Brown AD (eds) Bosques Nublados del Neotrópico. INBio, Heredia, Costa Rica, pp 623–659

    Google Scholar 

  • Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería, 2nd edn. Editorial Acme S.A.C.I., Buenos Aires

    Google Scholar 

  • Capon SJ, Chambers LE, Mac Nally R, Naiman RJ, Davies P, Marshall N, Pittock J, Reid M, Capon T, Douglas M, Catford J, Baldwin DS, Stewardson M, Roberts J, Parsons M, Williams SE (2013) Riparian ecosystems in the 21th century: hotspot for climate change adaptation? Ecosystems 16:359–381

    Article  Google Scholar 

  • Casco SL, Neiff JJ, Poi de Neiff A (2010) Ecological responses of two pionner species to a hydrological connectivity gradient in riparian forest of the lower Paraná River. Plant Ecol 209:167–177. https://doi.org/10.1007/s11258-010-9734-9

    Article  Google Scholar 

  • Cattaneo A, Salmoiraghi G, Gazzera S (1995) The rivers of Italy. In: Cushing CE, Cummins KW, Minshal GW (eds) River and stream ecosystems. Elsevier, Amsterdam, pp 479–505

    Google Scholar 

  • Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci Rev 84:56–86

    Article  Google Scholar 

  • Corenblit D, Davies NS, Steiger J, Gibling MR, Bornette G (2015) Considering river structure and stability in the light of evolution: feedbacks between riparian vegetation and hydrogeomorphology. Earth Surf Proc Land 40:189–207

    Article  Google Scholar 

  • Cultid-Medina CA, Escobar F (2016) Assessing the ecological response of Dung Beetles in an agricultural landscape using number of individuals and biomass in diversity measures. Environ Entomol 45:310–319

    Article  CAS  PubMed  Google Scholar 

  • Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 21:7–11

    Article  CAS  Google Scholar 

  • Décamps H (1996) The renewal of floodplain forests along rivers: a landscape perspective. Verh Int Ver Theor Angew Limnol 26:35–59

    Google Scholar 

  • Décamps H, Fortune M, Gazelle F, Patou G (1988) Historical influence of man on the riparian dynamics of a fluvial landscape. Landsc Ecol 1:163–173

    Article  Google Scholar 

  • Domínguez E, Fernández HR (1998) Calidad de los ríos de la cuenca del Salí (Tucumán, Argentina) medida por un índice biótico. Conservación de la Naturaleza, 12. Fundación Miguel Lillo, Tucumán

    Google Scholar 

  • Dray S, Dufour AB, Thioulouse J (2017) Package ade.4. Analysis of ecological data: Exploratory and Euclidean methods in environmental sciences. R-Project 20:31:18 UTC. https://pbil.univ-lyon1.fr/ADE-4

  • Ellis LM, Crawford CS, Molles MC Jr (2002) The role of flood pulse in ecosystem-level processes in southwestern riparian forest: a case study from the Middle Rio Grande. In: Middleton BA (ed) Flood pulsing in wetlands: restoring the natural hydrologic balance. Wiley, New York, pp 51–107

    Google Scholar 

  • Feinsinger P (2001) Designing field studies for biodiversity conservation. In: Moreno CE (ed) The nature conservancy. Island Press, Washington, DC

    Google Scholar 

  • Fernández HR, Domínguez E, Romero F, Cuezzo MG (2006) La calidad del agua y la bioindicación en los ríos de montaña del Noroeste Argentino. Serie Conservación de la Naturaleza, vol 16. Fundación Miguel Lillo, Tucumán.

    Google Scholar 

  • Fernández RD, Ceballos SJ, González Achem AL, Fernández HR, Hidalgo MV (2016) Quality and conservation of riparian forest in a Mountain Subtropical Basin of Argentina. Int J Ecol 1:1–12. https://doi.org/10.1155/2016/4842165

    Article  Google Scholar 

  • Garcia AK, Fernández HR, Rolandi ML, Gultemirian L, Sanchez N, Pla L, Hidalgo MV (2017) Effect of diffuse pollution on water quality in mountain forest streams. For Res Eng Int J 1(1):00001. https://doi.org/10.1155/2016/4842165

    Article  Google Scholar 

  • Gasparri NI (2016) The transformation of Land-Use Competition in the Argentinean Dry Chaco Between 1975 and 2015. In: Niewöhner J, Bruns A, Hostert P, Krueger T, Nielsen JØ, Haberl H, Lauk C, Lutz J, Müller D (eds) Land use competition: ecological, economics and social perspectives. Springer, Berlin, pp 59–73

    Chapter  Google Scholar 

  • Gregory SV, Swanson FV, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. Bioscience 41:540–551

    Article  Google Scholar 

  • Gurnell AM, Corenblit D, García de Jalón D, Gonzaléz del Tánago M, Grabowski RC, O’Haref MT, Szewczyk M (2016) Conceptual model of vegetation-hydrogeomorphology interactions within rivers corridors. River Res Appl 32:142–163

    Article  Google Scholar 

  • Hueck K (1978) Los bosques de Sudamérica. Ecología, Composición e Importancia Económica. Sociedad Alemana de Cooperación Técnica (GTZ), Berlín

  • Hunt L, Marrochi N, Bonetto C, Liess M, Buss DF, Vieira da Silva C, Chiu MC, Resh VH (2017) Do riparian buffer protect stream invertebrate communities in South American Atlantic forest agricultural areas? Environ Manag. https://doi.org/10.1007/s00267-017-0938-9

    Article  Google Scholar 

  • Hupp CR, Rinaldi M (2007) Riparian vegetation patterns in relation to fluvial landforms and channel evolution along selected rivers from Tuscany (Central Italy). Ann Assoc Am Geogr 97(1):12–30

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium. Canadian Special Publication of Fisheries and Aquatic Science, vol 106. Department of Fisheries and Oceans, Ottawa, pp 110–127

  • Kim D, Kupfer JA (2016) Tri-variate relationships among vegetation, soil, and topography along gradients fluvial biogeomorphic succession. PLoS ONE 11(9):e0163223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujanová K, Matausková M, Hosek Z (2018) The relationship between river types and land cover in riparian zones. Limonologica 71:29–43

    Article  Google Scholar 

  • Lamprecht H (1990) Silvicultura en los trópicos. GTZ, Eschborn

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling, 2nd ed. Elsevier, Amsterdam

    Google Scholar 

  • MacGregor-Fors I, Payton ME (2013) Contrasting diversity values: Statistical inferences based on overlapping confidence intervals. PLoS ONE 8(2):e56794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malanson GP (1993) Riparian Landscapes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article  CAS  Google Scholar 

  • Mertes LAK, Daniel DL, Melack JM, Nelson B, Martinelli LA, Forsberg BR (1995) Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon River in Brazil from a remote sensing perspective. Geomorphology 13:215–232

    Article  Google Scholar 

  • Mesa LM (2014) Influence of riparian quality on macroinvertebrate assemblages in subtropical mountain streams. J Nat Hist 1:1–12. https://doi.org/10.1080/00222933.2013.861937

    Article  Google Scholar 

  • Minneti JL (1999) Atlas climático del Noroeste Argentino. Laboratorio Climatológico sudamericano, Fundación Zon Caldenius, Tucumán

    Google Scholar 

  • Molineri C, Romero F, Fernández HR (2009) Diversidad y Conservación de Invertebrados Acuáticos. In: Brown AD, Blendinger PG, Lomáscolo T, García Bes P (eds) Selva Pedemontana de las Yungas: Historia natural, Ecología y Manejo de un Ecosistema en Peligro. Ediciones del Subtrópico, Yerba Buena

    Google Scholar 

  • Naiman RJ, Décamps H (1990) The ecology and management of aquatic-terrestrial ecotones. UNESCO, Paris

    Google Scholar 

  • Naiman RJ, Décamps H (1997) The ecology of interfaces: Riparian zones. Ann Rev Ecol Syst 28:621–658

    Article  Google Scholar 

  • Naiman RJ et al (1992) Fundamental elements of ecologically healthy watershade in the Pacific Northwest coastal ecoregion. In: Naiman RJ (ed) Watershade management: balancing sustainability and environmental change. Springer, New York, pp 127–188

    Chapter  Google Scholar 

  • Naiman RJ, Décamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–212

    Article  PubMed  Google Scholar 

  • Naiman RJ, Décamps H, McClain ME (2005) Riparia. Ecology, conservation and management of streamside communities. Elsevier Academic Press, London.

    Google Scholar 

  • Neiff JJ (1986) Las grandes unidades de vegetación y ambientes insular del río Paraná en el tramo Candelaria-Itá Ibaté. Rev Cienc Nat Lit 17:7–30

    Google Scholar 

  • Oliveira PS, Marquis RJ (2002) The Cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New York

    Book  Google Scholar 

  • Paolino RM, Royle JA, Versiani NF, Rodrigues TF, Pasqualotto N, Krepschi VG, Chiarelo AG (2018) Importance of riparian forest corridors for the ocelot in agricultural landscapes. J Mammal 99(4):874–884

    Article  Google Scholar 

  • Pereira BAS, Silva MA, Mendonça RC (1993) Reserva ecológica do IBGE (Brasília, DF): lista das plantas vasculares. IBGE, Rio de Janeiro

    Google Scholar 

  • Pero EJI (2017) New records of Tamarix ramosissima Ledeb. (Tamaricaceae) in basins of Western Chaco dry forest, northwestern Argentina. Check List 13:925–930

    Article  Google Scholar 

  • Pero EJI, Hankel G, Molineri C, Domínguez E (2019) Correspondance between stream benthic macroinvertebrates and ecoregions in northwestern Argentina. Freshw Sci 38(1):64–76. https://doi.org/10.1086/701467

    Article  Google Scholar 

  • Pinay G, Décamps H, Chauvet E, Fustec E (1990) Functions of ecotones in fluvial systems. In: Naiman RJ, Décamps H (eds) The ecology and management of aquatic-terrestrial ecotones. Parthenon Publishing Group, Carnforth, pp 141–169

    Google Scholar 

  • Pinay G, Bernal S, Abbott BW, Lupon A, Marti E, Sabater F, Krause S (2018) Riparian corridors: a new conceptual framework for assessing Nitrogen buffering across biomes. Frontiers in Environmental Science 6:47

    Article  Google Scholar 

  • Pokrovsky OS (2016) Riparian zones: characteristics, management practices and ecological impacts. Nova Science Publishers, New York

    Google Scholar 

  • Prach K, Straskrabová J (1996) Restoration of degraded meadows: an experimental approach. In: Prach K, Jeník J, Large ARG (eds) Floodplain ecology and management. Central Europe SPB, Academic Publishing, Amsterdam, The Lunice River in the Trebon Biosphere Reserve, pp 87–93

    Google Scholar 

  • Quantum GIS Development Team (2014) Quantum GIS geographic information system. Open Source Geospatial Foundation Project, Chicago

    Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramos PCM (1995) Vegetation communities and soils in the National Park of Brasília. Dissertation, University of Edinburgh

  • Rasmussen JJ, Baattrup-Pedersen A, Wiberg-Larsen P, McKnight US, Kronvang B (2011) Buffer strip width and agricultural pesticide contamination in Danish lowland streams: implications for stream and riparian management. Ecol Eng 37:1990–1997. https://doi.org/10.1016/j.ecoleng.2011.08.016

    Article  Google Scholar 

  • Reboratti HJ, Neiff JJ (1987) Distribución de los alisales de Tessaria integrifolia (Compositae) en los grandes ríos de la Cuenca del Plata. Boletín de la Sociedad Argentina de Botánica 25:25–42

    Google Scholar 

  • Rot BWL, Naiman RJ, Bilby RE (2000) Stream channel configuration, landform, and riparian forest structure in the Cascade Mountains, Washington. Can J Fish Aquat Sci 57:699–707

    Article  Google Scholar 

  • Salo EO, Cundy TW (1987) Streamside management: forestry and fishery interactions. Contribution 57. Institute of Forest Resources, University of Washington, Seattle

    Google Scholar 

  • Salo J, Kalliola R, Häkkinen I, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258

    Article  Google Scholar 

  • Scheiner SM, Gurevitch J (1993) Design and analysis of ecological experiments. Chapman and Hall, New York

    Google Scholar 

  • Sioli H (1984) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk Publishers, Dordrecht

    Book  Google Scholar 

  • Sirombra MG, Mesa LM (2010) Composición florística y distribución de los bosques ribereños subtropicales andinos del Río Lules, Tucumán, Argentina. Rev Biol Trop 58:499–510

    PubMed  Google Scholar 

  • Sirombra MG, Mesa LM (2012) A method for assessing the ecological quality of riparian forests in subtropical Andean streams: QBRy index. Ecol Indic 20:324–331

    Article  Google Scholar 

  • Steiger J, Tabacchi E, Dufour S, Corenblit D, Peiry J-L (2005) Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Res Appl 21:719–737

    Article  Google Scholar 

  • Tang SM, Montgomery DR (1995) Riparian buffers and potentially unstable ground. Environ Manag 19:741–749

    Article  Google Scholar 

  • Vallet HM, Baker MA, Morrice JA, Crawford CS, Molles MC Jr, Dahm CN, Moyer DL, Thibault JR, Ellis ML (2005) Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecol 86(1):220–234

    Article  Google Scholar 

  • van Coller AL, Rogers KH, Heritage GL (1997) Linking riparian vegetation types and fluvial geomorphology along Sabie River within Kruger National Park, South Africa. Afr J Ecol 35:194–212

    Article  Google Scholar 

  • Vidaurre M, Pacheco LF, Roldán AI (2006) Composition and abundance of birds of Andean alder (Alnus acuminata) patches with past and present harvest in Bolivia. Biol Conserv 132:12–21

    Article  Google Scholar 

  • Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 46:807–819

    Article  Google Scholar 

  • Welcomme RL (1985) River fisheries. Food and Agriculture Organization fisheries technical paper 262. United Nations Publications, Rome

    Google Scholar 

  • Zuloaga FO, Morrone O (1996) Catálogo de las plantas vasculares de la República Argentina. I. Pteridophyta, Gymnospermae and Angiospermae (Monocotyledoneae). Monogr Syst Bot Missouri Bot Garden 60:1–323

    Google Scholar 

  • Zuloaga FO, Morrone O (1999) Catálogo de las plantas vasculares de la República Argentina. II. Angiospermae (Dicotyledoneae). Monogr Syst Missouri Bot Garden 64:1–1269

    Google Scholar 

  • Zuloaga FO, Nicora EG, Rúgolo de Agrasar ZE, Morrone O, Pensiero JF, Cialdella AM (1994) Catálogo de la familia Poaceae en la República Argentina. Monogr Syst Bot Missouri Bot Garden 47:1–178

    Google Scholar 

Download references

Acknowledgements

We are grateful to Sofia Malcum, Mario Feylling, Nicolas Laguna, Sebastian Albanesi, Guillermo Hankel, Dante Loto, and Carlos Navarro for their assistance in sampling trips; to Luciana Cristobal for helping to edit the image of the study area; to Sergio Georgieff, Ignacio Gasparri, Carlos Cultid, Daniel Dos Santos, and Juan Pablo Juliá for their valuable comments; to Hugo Fernández and Eduardo Domínguez for a review of the manuscript; as well as to the three anonymous reviewers for their comments and suggestions which improved the manuscript. This study was supported by fellowships of ANPCyT (National Agency of Scientific and Technological Promotion) and CONICET (National Council of Scientific Research, Argentina) and the following grants: ANPCyT PICT 1067–2012, PIP-CONICET 0330, P-UE CONICET 0099, and Universidad Nacional de Tucumán POA2-2016/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo J. I. Pero.

Additional information

Communicated by Shayne Martin Jacobs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 kb)

Appendix: Species list

Appendix: Species list

Species

Family

Ecoregion

Abbreviation

Abutilon niveum Griseb.

Malvaceae

C

An

Acacia aroma Gillies ex Hook. and Arn

Fabaceae

C

Aa

Achatocarpus praecox Griseb.

Achatocarpaceae

C

Ap

Allophylus edulis (A. St.-Hil., A. Juss. and Cambess.) Hieron. ex Niederl.

Sapindaceae

Y

Ae

Alnus acuminata Kunth

Betulaceae

Y

Al

Anisocapparis speciosa (Griseb.) X. Cornejo and H.H. Iltis

Capparaceae

C

As

Arundo donax L.

Poaceae

C

Ad

Baccharis sp.

Asteraceae

C

Ba

Bidens sp.

Asteraceae

Y

Bi

Blepharocalyx salicifolius (Kunth) O. Berg

Myrtaceae

Y

Bs

Bougainvillea stipitata Griseb.

Nyctaginaceae

C

Bo

Bulnesia foliosa Griseb.

Zygophylaceae

C

Bf

Caesalpinia paraguariensis (D. Parodi) Burkart

Fabaceae

C

Ce

Capparicordis tweediana (Eichler) H.H. Iltis and X. Cornejo

Capparaceae

C

Ct

Celtis iguanaea (Jacq.) Sarg.

Celtidaceae

Y

Cg

Celtis tala Gillies ex Planch. = Celtis ehrenbergiana (Klotzsch) Liebm. var. ehrenbergiana

Celtidaceae

C

Cet

Cestrum strigilatum Ruiz and Pav.

Solanaceae

Y

Cst

Chamissoa altissima (Jacq.) Kunth

Amaranthaceae

Y

Cha

Chenopodium sp.

Chenopodiaceae

C

Ch

Chrysophyllum marginatum (Hook. and Arn.) Radlk.

Sapotaceae

Y

Cm

Cinnamomun porphyrium (Griseb.) Kosterm. = Ocotea porphyria (Griseb.) van der Werff

Lauraceae

Y

Cpo

Citrus aurantium L.

Rutaceae

Y

Ci

Croton sp.

Euphorbiaceae

C

Cr

Cupania vernalis Cambess.

Sapindaceae

Y

Cv

Duranta serratifolia (Griseb.) Kuntze

Verbenaceae

 

Ds

Enterolobium contortisiliquum (Vell.) Morong

Fabaceae

Y

Eco

Ephedra sp.

Ephedraceae

C

Ep

Equisetum giganteum L.

Equisetaceae

C, Y

Eg

Erythrina crista-galli L.

Fabaceae

C

Ec

Eugenia uniflora L.

Myrtaceae

Y

Eu

Geoffroea decorticans (Gillies ex Hook. and Arn.) Burkart

Fabaceae

C

Gd

Hedychium coronarium J. König

Zingiberaceae

Y

He

Heimia montana (Griseb.) Lillo

Lythraceae

C, Y

Hm

Iresine diffusa Humb. and Bonpl. ex Willd.

Asteraceae

Y

Id

Jacaranda mimosifolia D. Don

Bignoniaceae

Y

Jm

Juglans australis Griseb.

Juglandaceae

Y

Ja

Justicia sp.

Acanthaceae

C, Y

Ju

Lantana canescens Kunth

Verbenaceae

C

La

Lippia sp.

Verbenaceae

C

Li

Ludwigia sp.

Onagraceae

Y

Lu

Lycium sp.1

Solanaceae

C

Ls

Lycium sp.2

Solanaceae

C

LsII

Malva sp.

Malvaceae

C

Ma

Maytenus vitis-idaea Griseb.

Celastraceae

C

Mv

Melia azedarach L.

Meliaceae

C

Me

Miconia ioneura Griseb.

Melastomataceae

Y

Mi

Morus sp. L.

Moraceae

C

Mo

Myrcianthes mato (Griseb.) McVaugh

Myrtaceae

Y

Mm

Myrcianthes pungens (O. Berg) D. Legrand

Myrtaceae

Y

Mp

Nicotiana glauca Graham

Solanaceae

C

Ng

Opuntia quimilo K. Schum.

Cactaceae

C

Oq

Parapiptadenia excelsa (Griseb.) Burkart

Fabaceae

Y

Pe

Phenax laevigatus Wedd.

Urticaceae

Y

Pl

Piper hieronymi C. DC. var. hieronymi

Piperaceae

Y

Ph

Piper tucumanum C. DC.

Piperaceae

Y

Pt

Prosopis alba Griseb.

Fabaceae

C

Pa

Prosopis ruscifolia Griseb.

Fabaceae

C

Pv

Prunus tucumanensis Lillo

Rosaceae

Y

Ptu

Psycotria carthagenensis Jacq.

Rubiaceae

Y

Pc

Pteridophyta indet.

C

Pte

Randia micracantha (Lillo) Bacigalupo

Rubiaceae

Y

Rs

Ricinus communis L.

Euphorbiaceae

C

Rc

Rubus imperialis Cham. and Schltdl.

Rosaceae

Y

Ri

Ruprechtia apetala Wedd.

Polygonaceae

C

Rt

Salix humboldtiana Willd.

Salicaceae

C

Sa

Sapium haematospermum Müll. Arg.

Euphorbiaceae

C

Sh

Schinus bumelioides I.M. Johnst.

Anacardiaceae

C

Sb

Schinus fasciculatus (Griseb.) I.M. Johnst.

Anacardiaceae

C

Sf

Schinus gracilipes I.M. Johnst.

Anacardiaceae

Y

Sg

Senna morongii (Britton) H.S. Irwin and Barneby

Fabaceae

C

Se

Serjania marginata Casar.

Sapindaceae

C

Sm

Sida rhombifolia L.

Asteraceae

C

Sr

Solanum sp.

Solanaceae

C, Y

So

Solanum palinacanthum Dunal = S. claviceps

Solanaceae

Y

Sc

Solanum hieronymi Kuntze

Solanaceae

C

Sp

Solanum riparium Pers.

Solanaceae

Y

Sri

Tamarix ramosissima Ledeb.

Tamaricaceae

C

Tr

Terminalia triflora (Griseb.) Lillo

Combretaceae

C, Y

Tt

Tessaria dodoneifolia (Hook. and Arn.) Cabrera

Asteraceae

C

Td

Tessaria integrifolia Ruiz and Pav.

Asteraceae

C, Y

Ti

Thelypteris sp.

Thelypteridaceae

Y

Th

Tipuana tipu (Benth.) Kuntze

Fabaceae

Y

Tti

Trema micranta (L.) Blume

Urticaceae

Y

Tm

Urera baccifera (L.) Gaudich.

Urticaceae

Y

Ub

Urera caracasana (Jacq.) Gaudich. ex Griseb.

Urticaceae

C, Y

Uc

Vallesia glabra (Cav.) Link

Apocynaceae

C

Vg

Verbesina suncho (Griseb.) S.F. Blake

Asteraceae

C, Y

Vs

Vernonia fulta Griseb. = Quechualia fulta (Griseb.) H. Rob.

Asteraceae

C, Y

Vf

Xylosma pubescens Griseb.

Salicaceae

Y

Xp

Ziziphus mistol Griseb. = Sarcomphalus mistol (Griseb.) Hauenschild

Ramnaceae

C

Zm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pero, E.J.I., Quiroga, P.A. Riparian and adjacent forests differ both in the humid mountainous ecoregion and the semiarid lowland. Plant Ecol 220, 481–498 (2019). https://doi.org/10.1007/s11258-019-00929-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-019-00929-w

Keywords