Drought in Southern California coastal sage scrub reduces herbaceous biomass of exotic species more than native species, but exotic growth recovers quickly when drought ends

Abstract

Semi-arid regions with Mediterranean-type climates harbor exceptional biodiversity, but are increasingly threatened by invading exotic annual species and climatic changes, including drought. In semi-arid ecosystems, antecedent conditions often influence plant growth, but the role of antecedent conditions for drought response and recovery of native versus exotic species remains largely unexplored. From 2013 to 2016, we imposed experimental rainfall treatments (average rainfall, moderate or severe drought) in plots under a native shrub canopy and in inter-spaces dominated by herbaceous vegetation, and quantified growth (peak biomass) and abundance (cover) of native and exotic herbaceous species. The following year, we quantified recovery from the drought treatments (2017). Exotic biomass was less resistant to drought (declined more than native biomass), but was more resilient (increased more than native biomass in the year following drought), especially in unshaded inter-spaces between shrubs. These responses were associated with life history; annual species responded more negatively to drought in the inter-spaces than perennial species. Current years' rainfall was a better predictor of biomass than prior rainfall, but antecedent factors were also important. After four years of rainfall treatments, exotic species had the highest growth recovery in the severe drought treatment, while growth of natives had the opposite response. In contrast, litter was positively associated with plant growth regardless of origin. This study demonstrates that when native and exotic species differ in life history, as they do in Mediterranean climate ecosystems, they may respond differently to antecedent factors, and hence differ in recovery from climate extremes such as drought.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderson JE, Inouye RS (2001) Landscape-scale changes in plant species abundance and biodiversity of a sagebrush steppe over 45 years. Ecol Mon 71:531–556. https://doi.org/10.2307/3100035

    Article  Google Scholar 

  2. Ashbacher AC, Cleland EE (2015) Native and exotic plant species show differential growth but similar functional trait responses to experimental rainfall. Ecosphere 6:1–14. https://doi.org/10.1890/ES15-00059.1

    Article  Google Scholar 

  3. Balch JK, Bradley BA, D'Antonio CM, Gómez-Dans J (2013) Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob Change Biol 19:173–183. https://doi.org/10.1111/gcb.12046

    Article  Google Scholar 

  4. Bartoń K (2016) MuMIn: Multi-Model Inference. R package version 1(15):7

    Google Scholar 

  5. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4.

  6. Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748. https://doi.org/10.1111/gcb.12344

    Article  Google Scholar 

  7. Berg N, Hall A (2015) Increased interannual precipitation extremes over California under climate change. J Clim 28:6324–6334. https://doi.org/10.1175/JCLI-D-14-00624.1

    Article  Google Scholar 

  8. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. https://doi.org/10.1890/08-1140.1

    CAS  Article  Google Scholar 

  9. Boeken B, Orenstein D (2001) The effect of plant litter on ecosystem properties in a Mediterranean semi-arid shrubland J Veg Sci 12:825–832

    Google Scholar 

  10. Bradley BA (2009) Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Glob Change Biol 15:196–208. https://doi.org/10.1111/j.1365-2486.2008.01709.x

    Article  Google Scholar 

  11. Castro, S. (2018) Impacts of altered rainfall and invasive plants on soil microbial communities in southern California shrublands. Dissertation, San Diego State University

  12. Cavaleri MA, Sack L (2010) Comparative water use of native and invasive plants at multiple scales: a global meta-analysis. Ecology 91:2705–2715. https://doi.org/10.1890/09-0582.1

    PubMed  Article  Google Scholar 

  13. Cayan DR, Maurer EP, Dettinger MD, Tyree M, Hayhoe K (2008) Climate change scenarios for the California region. Clim Change 87:21–42. https://doi.org/10.1007/s10584-007-9377-6

    Article  Google Scholar 

  14. Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260. https://doi.org/10.1146/annurev.es.11.110180.001313

    CAS  Article  Google Scholar 

  15. Chesson P (1994) Multispecies competition in variable environments. Theor Pop Biol 45:227–276. https://doi.org/10.1006/tpbi.1994.1013

    Article  Google Scholar 

  16. Chrobock T, Kempel A, Fischer M, van Kleunen M (2011) Introduction bias: cultivated alien plant species germinate faster and more abundantly than native species in Switzerland. Basic App Ecol 12:244–250. https://doi.org/10.1016/j.baae.2011.03.001

    Article  Google Scholar 

  17. Cincotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404:990–992. https://doi.org/10.1038/35010105

    PubMed  CAS  Article  Google Scholar 

  18. Cleland EE, Collins SL, Dickson TL, Farrer EC, Gross KL, Gherardi LA, Hallett LM, Hobbs RJ, Hsu JS, Turnbull L, Suding KN (2013) Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94:1687–1696. https://doi.org/10.1890/12-1006.1

    PubMed  Article  Google Scholar 

  19. Cleland EE, Funk JL, Allen EB (2016) Coastal sage scrub. In: Mooney H, Zavaleta E (eds) Ecosystems of California. University of California Press, Berkley, pp 429–448

    Google Scholar 

  20. Collins M, Knutti R, Arblaster J, Dufrense J-L, Fichefet T, Friedlingstein P, Gao X, Gutowkski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  21. Concilio AL, Nippert JB, Ehrenfeucht S, Cherwin K, Seastedt TR (2016) Imposing antecedent global change conditions rapidly alters plant community composition in a mixed-grass prairie. Oecologia 182:899–911. https://doi.org/10.1007/s00442-016-3684-4

    PubMed  Article  Google Scholar 

  22. Copeland SM, Harrison SP, Latimer AM, Damschen EI, Eskelinen AM, Fernandez-Going B, Spasojevic MJ, Anacker BL, Thorne JH (2016) Ecological effects of extreme drought on Californian herbaceous plant communities. Ecol Monogr 86:295–311. https://doi.org/10.1002/ecm.1218

    Article  Google Scholar 

  23. Cox RD, Allen EB (2008) Composition of soil seed banks in southern California coastal sage scrub and adjacent exotic grassland. Plant Ecol 198:37–46. https://doi.org/10.1007/s11258-007-9383-9

    Article  Google Scholar 

  24. Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Ann Rev Ecol Sys 34:183–211. https://doi.org/10.1146/annurev.ecolsys.34.011802.132403

    Article  Google Scholar 

  25. D'Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann Rev Ecol Evol Sys 23:63–87. https://doi.org/10.1146/annurev.es.23.110192.000431

    Article  Google Scholar 

  26. Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014G) Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett 41:2928–2933. https://doi.org/10.1002/2014GL059576

    Article  Google Scholar 

  27. Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJ, Blumenthal DM, Bradley BA, Early R, Ibáñez I, Jones SJ, Lawler JJ, Miller LP (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Env 10:249–257. https://doi.org/10.1890/110137

    Article  Google Scholar 

  28. Diffenbaugh NS, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change 114:813–822. https://doi.org/10.1007/s10584-012-0570-x

    PubMed  PubMed Central  Article  Google Scholar 

  29. Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. PNAS 112:3931–3936. https://doi.org/10.1073/pnas.1422385112

    PubMed  CAS  Article  Google Scholar 

  30. Dudney J, Hallett LM, Larios L, Farrer EC, Spotswood EN, Stein C, Suding KN (2017) Lagging behind: have we overlooked previous-year rainfall effects in annual grasslands? J Ecol 105:484–495. https://doi.org/10.1111/1365-2745.12671

    Article  Google Scholar 

  31. Eckstein RL, Ruch D, Otte A, Donath TW (2012) Invasibility of a nutrient-poor pasture through resident and non-resident herbs is controlled by litter, gap size and propagule pressure. PLoS ONE 7:e41887. https://doi.org/10.1371/journal.pone.0041887

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  32. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Ann Rev Ecol Evol Sys 41:59–80. https://doi.org/10.1146/annurev-ecolsys-102209-144650

    Article  Google Scholar 

  33. Esch EH (2017) Invasion increases ecosystem sensitivity to drought in Southern California. Dissertation. University of California, San Diego

  34. Eskelinen A, Harrison S (2014) Exotic plant invasions under enhanced rainfall are constrained by soil nutrients and competition. Ecology 95:682–692. https://doi.org/10.1890/13-0288.1

    PubMed  Article  Google Scholar 

  35. Facelli JM, Pickett STA (1991) Plant litter: Its dynamics and effects on plant community structure. Bot Rev 57:1–32. https://doi.org/10.1007/BF02858763

    Article  Google Scholar 

  36. Faist AM, Ferrenberg S, Collinge SK (2013) Banking on the past: seed banks as a reservoir for rare and native species in restored vernal pools. AoB Plants 5:plt043. https://doi.org/10.1093/aobpla/plt043

    PubMed Central  Article  Google Scholar 

  37. Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602. https://doi.org/10.1890/0012-9658(1998)079[2593:SRIASG]2.0.CO;2

    Article  Google Scholar 

  38. Fox J, Weisberg S (2011) An R companion to applied regression. SAGE Publications

  39. Funk JL, Standish RJ, Stock WD, Valladares F (2016) Plant functional traits of dominant native and invasive species in Mediterranean-climate ecosystems. Ecology 97(1):75–83. https://doi.org/10.1890/15-0974.1

    PubMed  Article  Google Scholar 

  40. Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. Statist Med 27:2865–2873. https://doi.org/10.1002/sim.3107

    Article  Google Scholar 

  41. Gioria M, Pyšek P (2016) The legacy of plant invasions: changes in the soil seed bank of invaded plant communities. Bioscience 66:40–53. https://doi.org/10.1093/biosci/biv165

    Article  Google Scholar 

  42. Griffin D, Anchukaitis KJ (2014) How unusual is the 2012–2014 California drought? Geophys Res Lett 41:2014GL062433. doi: 10.1002/2014GL062433

  43. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  44. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711. https://doi.org/10.1111/j.1420-9101.2010.02210.x

    PubMed  CAS  Article  Google Scholar 

  45. Harrison SP, Gornish ES, Copeland S (2015) Climate-driven diversity loss in a grassland community. PNAS 112:8672–8677. https://doi.org/10.1073/pnas.1502074112

    PubMed  CAS  Article  Google Scholar 

  46. Hobbs RJ, Yates S, Mooney HA (2007) Long-term data reveal complex dynamics in grassland in relation to climate and disturbance. Ecol Mon 77:545–568

    Article  Google Scholar 

  47. Holling CS (1973) Resilience and stability of ecological systems. Ann Rev Ecol Sys 4:1–23. https://doi.org/10.1146/annurev.es.04.110173.000245

    Article  Google Scholar 

  48. Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Hice C, Jaksic F, Kelt DA, Letnic M, Lima M, López BC, Meserve PL, Milstead WB, Polis GA, Previtali MA, Richter M, Sabaté S, Squeo FA (2006) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Env 4:87–95. https://doi.org/10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2

    Article  Google Scholar 

  49. Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK (2017) Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J Geophys Res Biogeosci 2017JG004146. doi: 10.1002/2017JG004146

  50. Hoover DL, Knapp AK, Smith MD (2014) Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95:2646–2656. https://doi.org/10.1890/13-2186.1

    Article  Google Scholar 

  51. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71:478–491. https://doi.org/10.2307/1940302

    Article  Google Scholar 

  52. Jiménez MA, Jaksic FM, Armesto JJ, Gaxiola A, Meserve PL, Kelt DA, Gutiérrez JR (2011) Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities. Ecol Lett 14:1227–1235. https://doi.org/10.1111/j.1461-0248.2011.01693.x

    PubMed  Article  Google Scholar 

  53. Kimball S, Goulden ML, Suding KN, Parker S (2014) Altered water and nitrogen input shifts succession in a southern California coastal sage community. Ecol App 24:1390–1404. https://doi.org/10.1890/13-1313.1

    Article  Google Scholar 

  54. LaForgia ML, Spasojevic MJ, Case EJ, Latimer AM, Harrison SP (2018) Seed banks of native forbs, but not exotic grasses, increase during extreme drought. Ecology 99:896–903. https://doi.org/10.1002/ecy.2160

    PubMed  Article  Google Scholar 

  55. Lauenroth WK, Sala OE (1992) Long-term forage production of North American shortgrass steppe. Ecol App 2:397–403. https://doi.org/10.2307/1941874

    CAS  Article  Google Scholar 

  56. Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phyt 177:706–714. https://doi.org/10.1111/j.1469-8137.2007.02290.x

    CAS  Article  Google Scholar 

  57. Liu Y, Oduor AMO, Zhang Z, Manea A, Tooth IM, Leishman MR, Xu X, van Kleunen M (2017) Do invasive alien plants benefit more from global environmental change than native plants? Glob Chang Biol 23:3363–3370. https://doi.org/10.1111/gcb.13579

    PubMed  Article  Google Scholar 

  58. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052. https://doi.org/10.1038/nature08649

    PubMed  CAS  Article  Google Scholar 

  59. Loydi A, Eckstein RL, Otte A, Donath TW (2013) Effects of litter on seedling establishment in natural and semi-natural grasslands: a meta-analysis. J Ecol 101:454–464. https://doi.org/10.1111/1365-2745.12033

    Article  Google Scholar 

  60. Minnich RA, Dezzani RJ (1998) Historical decline of coastal sage scrub in the Riverside-Perris Plain. Western Birds 29:366–391

    Google Scholar 

  61. Moles AT, Gruber MAM, Bonser SP (2008) A new framework for predicting invasive plant species. J Ecol 96:13–17. https://doi.org/10.1111/j.1365-2745.2007.01332.x

    Article  Google Scholar 

  62. Oesterheld M, Loreti J, Semmartin M, Sala OE (2001) Inter-annual variation in primary production of a semi-arid grassland related to previous-year production. J Veg Sci 12:137–142. https://doi.org/10.2307/3236681

    Article  Google Scholar 

  63. Ogle K, Barber JJ, Barron-Gafford GA, Bentley LP, Young JM, Huxman TE, Loik ME, Tissue DT (2015) Quantifying ecological memory in plant and ecosystem processes. Ecol Lett 18:221–235. https://doi.org/10.1111/ele.12399

    PubMed  Article  Google Scholar 

  64. Pake CE, Venable DL (1996) Seed banks in desert annuals: Implications for persistence and coexistence in variable environments. Ecology 77:1427–1435. https://doi.org/10.2307/2265540

    Article  Google Scholar 

  65. Parker VT, Kelly VR (1989) Seed banks in California chaparral and other Mediterranean climate shrublands. In: Leek MA, Parker VT, Simpson RL (eds) Ecology of soil seedbanks. Academic Press, San Diego, pp 231–255

    Google Scholar 

  66. Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Development Team (2013) Nlme: linear and nonlinear mixed effects models. R package version 3:1

    Google Scholar 

  67. Potts D et al (2006) Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New Phytol 170:849–860. https://doi.org/10.1111/j.1469-8137.2006.01732.x

    PubMed  CAS  Article  Google Scholar 

  68. Powell KI, Chase JM, Knight TM (2011) A synthesis of plant invasion effects on biodiversity across spatial scales. Am J Bot 98:539–548. https://doi.org/10.3732/ajb.1000402

    PubMed  Article  Google Scholar 

  69. R Core Development Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  70. Rees M (1994) Delayed germination of seeds: A look at the effects of adult longevity, the timing of reproduction, and population age/stage structure. Am Nat 144:43–64. https://doi.org/10.1086/285660

    Article  Google Scholar 

  71. Reichmann LG, Sala OE, Peters DPC (2013) Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology 94:435–443. https://doi.org/10.1890/12-1237.1

    PubMed  Article  Google Scholar 

  72. Reynolds SA, Corbin JD, D’Antonio CM (2001) The effects of litter and temperature on the germination of native and exotic grasses in a coastal California grassland. Madroño 48:230–235

    Google Scholar 

  73. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Div Dist 6:93–107. https://doi.org/10.1046/j.1472-4642.2000.00083.x

    Article  Google Scholar 

  74. Robeson SM (2015) Revisiting the recent California drought as an extreme value. Geophys Res Lett 42:2015GL064593. doi: 10.1002/2015GL064593

  75. Rundel PW (2007) Sage Scrub. In: Barbour M, Keeler-Wolf T, Schoenherr AA (eds) Terrestrial vegetation of California, 3rd edn. University of California Press, pp 208–228

  76. Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc Lond B Biol Sci 367:3135–3144. https://doi.org/10.1098/rstb.2011.0347

    PubMed  PubMed Central  Article  Google Scholar 

  77. Sandel B, Dangremond EM (2012) Climate change and the invasion of California by grasses. Glob Change Biol 18:277–289. https://doi.org/10.1111/j.1365-2486.2011.02480.x

    Article  Google Scholar 

  78. Seabloom EW, Williams JW, Slayback D, Stoms DM, Viers JH, Dobson AP (2006) Human impacts, plant invasion, and imperiled plant species in California. Ecol App 16:1338–1350. https://doi.org/10.1890/1051-0761(2006)016[1338:HIPIAI]2.0.CO;2

    Article  Google Scholar 

  79. Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H-P, Harnik N, Leetmaa A, Lau N-C, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184. https://doi.org/10.1126/science.1139601

    PubMed  CAS  Article  PubMed Central  Google Scholar 

  80. Seebens H, Essl F, Dawson W, Fuentes N, Moser D, Pergl J, Pyšek P, van Kleunen M, Weber E, Winter M, Blasius B (2015) Global trade will accelerate plant invasions in emerging economies under climate change. Glob Change Biol 21:4128–4140. https://doi.org/10.1111/gcb.13021

    Article  Google Scholar 

  81. Soliveres S, Eldridge DJ, Maestre FT, Bowker MA, Tighe M, Escudero A (2011) Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: Towards a unifying framework. Per Plant Ecol Evol Sys 13:247–258. https://doi.org/10.1016/j.ppees.2011.06.001

    Article  Google Scholar 

  82. Sorte CJB, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ, Dukes JS (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett 16:261–270. https://doi.org/10.1111/ele.12017

    PubMed  Article  Google Scholar 

  83. Sousa WP (1984) The role of disturbance in natural communities. Ann Rev Ecol Sys 15:353–391. https://doi.org/10.1146/annurev.es.15.110184.002033

    Article  Google Scholar 

  84. Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS 102:4387–4392. https://doi.org/10.1073/pnas.0408648102

    PubMed  CAS  Article  Google Scholar 

  85. Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315:640–642. https://doi.org/10.1126/science.1136401

    PubMed  CAS  Article  Google Scholar 

  86. Talluto MV, Suding KN (2008) Historical change in coastal sage scrub in Southern California, USA in relation to fire frequency and air pollution. Landsc. Ecol. 23:803–815. https://doi.org/10.1007/s10980-008-9238-3

    Article  Google Scholar 

  87. Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125:827–852

    Article  Google Scholar 

  88. Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the Mediterranean biome. Div Dist 15:188–197. https://doi.org/10.1111/j.1472-4642.2008.00518.x

    Article  Google Scholar 

  89. Van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245. https://doi.org/10.1111/j.1461-0248.2009.01418.x

    PubMed  Article  Google Scholar 

  90. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x

    PubMed  Article  Google Scholar 

  91. Wainwright CE, Cleland EE (2013) Exotic species display greater germination plasticity and higher germination rates than native species across multiple cues. Biol Inv 15:2253–2264. https://doi.org/10.1007/s10530-013-0449-4

    Article  Google Scholar 

  92. Westman WE (1978) Measuring the inertia and resilience of ecosystems. Bioscience 28:705–710. https://doi.org/10.2307/1307321

    Article  Google Scholar 

  93. Wilsey BJ, Daneshgar PP, Polley HW (2011) Biodiversity, phenology and temporal niche differences between native- and novel exotic-dominated grasslands. Per Plant Ecol Evol Sys 13:265–276. https://doi.org/10.1016/j.ppees.2011.07.002

    Article  Google Scholar 

  94. Wolkovich EM, Lipson DA, Virginia RA, Cottingham KL, Bolger DT (2010) Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob Change Biol 16:1351–1365. https://doi.org/10.1111/j.1365-2486.2009.02001.x

    Article  Google Scholar 

  95. Yoon J-H, Wang S-YS, Gillies RR, Kravitz B, Hipps L, Rasch PJ (2015) Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nature Comm 6:8657. https://doi.org/10.1038/ncomms9657

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation (NSF) Division of Environmental Biology Grants to E.E.C. (DEB-1154082) and to D.L. (DEB-1153958), and NSF Graduate Research Fellowships to E.H.E (DGE-1144086) and C.E.P. (DGE-16540112). A California Native Plant Society Grant to E.H.E. also helped support this research. We thank Rachel Abbott, Andrew Heath, Christopher Kopp, and Elizabeth Premo for help in maintaining the field experiment. This work was performed at the San Diego State University’s Santa Margarita Ecological Reserve and we thank Pablo Bryant for site access and maintenance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elsa E. Cleland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Lori Biederman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6085 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Puritty, C.E., Esch, E.H., Castro, S.P. et al. Drought in Southern California coastal sage scrub reduces herbaceous biomass of exotic species more than native species, but exotic growth recovers quickly when drought ends. Plant Ecol 220, 151–169 (2019). https://doi.org/10.1007/s11258-019-00912-5

Download citation

Keywords

  • Antecedent conditions
  • Ecological resilience
  • Invasion
  • Litter
  • Seedbank