Spatial and temporal variation in moss-associated dinitrogen fixation in coniferous- and deciduous-dominated Alaskan boreal forests

  • Mélanie Jean
  • Michelle C. Mack
  • Jill F. Johnstone
Article

Abstract

Dominant canopy tree species have strong effects on the composition and function of understory species, particularly bryophytes. In boreal forests, bryophytes and their associated microbes are a primary source of ecosystem nitrogen (N) inputs, and an important process regulating ecosystem productivity. We investigated how feather moss-associated N2-fixation rates and contribution to N budgets vary in time and space among coniferous and broadleaf deciduous forests. We measured N2-fixation rates using stable isotope (15N2) labeling in two moss species (Pleurozium schreberi and Hylocomium splendens) in broadleaf deciduous (Alaska paper birch—Betula neoalaskana) and coniferous (black spruce—Picea mariana) stands near Fairbanks, interior Alaska, from 2013 to 2015. N2-fixation rates showed substantial inter-annual variation among the 3 years. High N2-fixation was more strongly associated with high precipitation than air temperature or light availability. Overall, contribution of N2-fixation to N budgets was greater in spruce than in birch stands. Our results enhance the knowledge of the processes that drive N2-fixation in boreal forests, which is important for predicting ecosystem consequences of changing forest composition.

Keywords

Nitrogen fixation Feather moss Boreal forest Nitrogen cycle Stable isotope 

Notes

Acknowledgments

We thank Alix Conway, Samantha Miller, Patricia Tomchuk, Dominic Olver, Alexandre Truchon-Savard, and Nicolas Boldt for help in the field/lab. Funding came from the Department of Defense’s Strategic Environmental Research and Development Program (SERDP RC-2109), the Natural Science and Engineering Research Council of Canada (NSERC), the Northern Scientific Training Program (NSTP), NASA Ecosystems and Carbon Cycle, the National Science Foundation’s Bonanza Creek Long Term Ecological Research Site program (NSF DEB-1636476), and USDA Forest Service, Pacific Northwest Research Station.

Supplementary material

11258_2018_838_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 39 kb)

References

  1. ACIA (Arctic Climate Impact Assessment) (2005) Impacts of a warming arctic. Cambridge University Press, CambridgeGoogle Scholar
  2. Ackermann K (2013) Nitrogen dynamics in boreal forests: a feather moss’ perspective. Dissertation, Bangor UniversityGoogle Scholar
  3. Alaska Climate Research Center (ACRC) (2016) Fairbanks annual weather review. Alaska Climate Research Center. http://akclimate.org/. Accessed 12 Feb Dec 2016
  4. Alaska Interagency Coordination Center (AICC) (2015). 2015 Alaska wildfire by area and protection level. Alaska Department of Natural Resources. http://forestry.alaska.gov/. Accessed 15 Dec 2015
  5. Alexander HD, Mack MC (2016) A canopy shift in interior Alaskan boreal forests: consequences for above- and belowground carbon and nitrogen pools during post-fire succession. Ecosystems 19:98–114CrossRefGoogle Scholar
  6. Alexander V, Schell DM (1973) Seasonal and spatial variation of nitrogen fixation in the Barrow, Alaska, Tundra. Arct Alp Res 5:77–88CrossRefGoogle Scholar
  7. Basilier K (1980) Fixation and uptake of nitrogen in Sphagnum blue-green algal associations. Oikos 34:239–242CrossRefGoogle Scholar
  8. Billington M, Alexander V (1978) Nitrogen fixation in a black spruce (Picea mariana [Mill] B.S.P.) forest in Alaska. Ecol Bull 26:209–215Google Scholar
  9. Billington MM, Alexander V (1983) Site-to-site variation in nitrogenase activity in a subarctic black spruce forest. Can J For Res 13:782–788CrossRefGoogle Scholar
  10. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718CrossRefGoogle Scholar
  11. Calef MP, McGuire AD, Epstein HE, Rupp TS, Shugart HH, Chapin FS (2005) Analysis of vegetation distribution in Interior Alaska and sensitivity to climate change using a logistic regression approach. J Biogeogr 32:863–878CrossRefGoogle Scholar
  12. Carleton TJ, Read DJ (1991) Ectomycorrhizas and nutrient transfer in conifer-feather moss ecosystems. Can J Bot 69:778–785CrossRefGoogle Scholar
  13. Chapin DC, Bliss LC, Bledsoe LJ (1991) Environmental regulation of nitrogen fixation in a high Arctic lowland ecosystem. Can J Bot 69:2477–2755CrossRefGoogle Scholar
  14. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Hlseroad A, Wasson MF, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645CrossRefGoogle Scholar
  15. DeLuca TH, Boisvenue C (2012) Boreal forest soil carbon: distribution, function and modelling. Forestry 85:161–184CrossRefGoogle Scholar
  16. DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Lett Nat 419:917CrossRefGoogle Scholar
  17. DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson M-C (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia 152:121–130CrossRefPubMedGoogle Scholar
  18. DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181CrossRefPubMedGoogle Scholar
  19. Development Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  20. Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA). Cary Institute of Ecosystem Studies, MillbrookGoogle Scholar
  21. Gavazov KS, Soudzilovskaia NA, van Logtestijn RSP, Braster M, Cornelissen JHC (2010) Isotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte species. Plant Soil 333:507–517CrossRefGoogle Scholar
  22. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Grace JB, Schoolmaster DR, Guntenspergen GR, Little AM, Mitchell BR, Miller KM, Schweiger EW (2012) Guidelines for a graphtheoretic implementation of structural equation modeling. Ecosphere 3:1–44CrossRefGoogle Scholar
  24. Gundale MJ, Gustafsson H, Nilsson M-C (2009) The sensitivity of nitrogen fixation by a feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forests. Can J For Res 39:2542–2549CrossRefGoogle Scholar
  25. Gundale MJ, Deluca TH, Nordin A (2011) Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob Chang Biol 17:2743–2753CrossRefGoogle Scholar
  26. Gundale MJ, Nilsson M, Bansal S, Jäderlund A (2012a) The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytol 194:453–463CrossRefPubMedGoogle Scholar
  27. Gundale MJ, Wardle DA, Nilsson M-C (2012b) The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol Lett 8:805–808CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hardy RWF, Burns RC, Holsten RP (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–48CrossRefGoogle Scholar
  29. Hart SA, Chen HYH (2006) Understory vegetation dynamics of North American boreal forests. Crit Rev Plant Sci 25:381–397CrossRefGoogle Scholar
  30. Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim Change 72:251–298CrossRefGoogle Scholar
  31. Hinzman LD, Bolton RW, Petrone KC, Jones JB, Adams PC (2006) Watershed hydrology and chemistry in the Alaskan boreal forest: the central role of permafrost. In: Chapin FS, Oswood MW, Van Cleve K, Viereck LA, Verbyla DL (eds) Alaska’s changing boreal forest. Oxford University Press, New York, pp 269–284Google Scholar
  32. Hyodo F, Wardle DA (2009) Effect of ecosystem retrogression on stable nitrogen and carbon isotopes of plants, soils and consumer organisms in boreal forest islands. Rapid Commun Mass Spectrom 23:1892–1898CrossRefPubMedGoogle Scholar
  33. Ininbergs K, Bay G, Rasmussen U, Wardle DA, Nilsson M-C (2011) Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses. New Phytol 192:507–517CrossRefPubMedGoogle Scholar
  34. Jackson BG, Martin P, Nilsson M-C, Wardle DA (2011) Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. Oikos 120:570–581CrossRefGoogle Scholar
  35. Jean M (2017) Effects of leaf litter and environment on bryophytes in boreal forests of Alaska. Dissertation, University of SaskatchewanGoogle Scholar
  36. Jean M, Alexander HD, Mack MC, Johnstone JF (2017) Patterns of bryophyte succession in a 160-year chronosequence in deciduous and coniferous forests of boreal Alaska. Can J For Res 1032:1021–1032CrossRefGoogle Scholar
  37. Jones JB, Petrone KC, Finlay JC, Hinzman LD, Bolton WR (2005) Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost. Geophys Res Lett 32:1–4Google Scholar
  38. Kardol P, Spitzer CM, Gundale MJ, Nilsson M-C, Wardle DA (2016) Trophic cascades in the bryosphere: the impact of global change factors on top-down control of cyanobacterial N2-fixation. Ecol Lett 19:967–976CrossRefPubMedGoogle Scholar
  39. Kuznetsova A, Brockhoff PB, Christensen RHB (2015) lmerTest: tests in linear mixed effects models. R package version 2.0-20. https://www.cran.r-projectorg/web/packages/lmerTest. Accessed Nov 2016
  40. Lagerström A, Nilsson M-C, Zackrisson O, Wardle DA (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct Ecol 21:1027–1033CrossRefGoogle Scholar
  41. Lindo Z, Nilsson M-C, Gundale MJ (2013) Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Chang Biol 19:2022–2035CrossRefPubMedGoogle Scholar
  42. Melvin AM, Mack MC, Johnstone JF, McGuire AD, Genet H, Schuur EAG (2015) Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest. Ecosystems 18:1472–1488CrossRefGoogle Scholar
  43. Näsholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916CrossRefGoogle Scholar
  44. Oechel WC, Van Cleve K (1986) The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K, Chapin FS, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan taiga. Springer, New York, pp 121–137CrossRefGoogle Scholar
  45. Parke JL, Linderman RG (1980) Association of vesicular-arbuscular mycorrhizal fungi with the moss Funaria hygrometrica. Can J Bot 58:1898–1904CrossRefGoogle Scholar
  46. Rosseel Y (2011) lavaan: an R package for structural equation modeling and more. R package version 0.4-9 (BETA). https://cran.r-project.org/web/packages/lavaan/index.html. Accessed Nov 2016
  47. Rousk K, Michelsen A (2017) Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming. Glob Chang Biol 23:1552–1563CrossRefPubMedGoogle Scholar
  48. Rousk K, Jones DL, DeLuca TH (2014) The resilience of nitrogen fixation in feather moss (Pleurozium schreberi)-cyanobacteria associations after a drying and rewetting cycle. Plant Soil 377:159–167CrossRefGoogle Scholar
  49. Rousk K, Sorensen PL, Lett S, Michelsen A (2015) Across-habitat comparison of diazotroph activity in the Subarctic. Microb Ecol 69:778–787CrossRefPubMedGoogle Scholar
  50. Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger JP (2017) Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytol 214:97–107CrossRefPubMedGoogle Scholar
  51. Ruess RW, Van Cleve K, Yarie J, Viereck LA (1996) Contribution of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Can J For Res 26:1326–1336CrossRefGoogle Scholar
  52. Sorensen PL, Lett S, Michelsen A (2012) Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition. Plant Ecol 213:695–706CrossRefGoogle Scholar
  53. Sponseller RA, Gundale MJ, Futter M, Ring E, Nordin A, Näsholm T, Laudon H (2016) Nitrogen dynamics in managed boreal forests: recent advances and future research directions. Ambio 45:175–187CrossRefPubMedPubMedCentralGoogle Scholar
  54. Stuiver BM, Gundale MJ, Wardle DA, Nilsson M-C (2015) Nitrogen fixation rates associated with the feather mosses Pleurozium schreberi and Hylocomium splendens during forest stand development following clear-cutting. Forest Ecol Manag 347:130–139CrossRefGoogle Scholar
  55. Tamm CO (1991) Nitrogen-limited and nitrogen-depleted terrestrial ecosystems: ecological characteristics. In: Tamm CO (ed) Nitrogen in terrestrial ecosystems. Springer, Berlin, pp 34–49CrossRefGoogle Scholar
  56. Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409CrossRefGoogle Scholar
  57. Turetsky MR, Bond-Lamberty BP, Euskirchen ES, Talbot J, Frolking S, McGuire AD, Tuittila E-S (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol 196:49–67CrossRefPubMedGoogle Scholar
  58. Van Cleve K, Alexander V (1981) Nitrogen cycling in tundra and boreal ecosystems. In: Rosswall T, Clark FE (eds) Terrestrial nitrogen cycles. Ecological bulletins, vol 33. Swedish Natural Science Research Council, Stockholm, pp 375–404Google Scholar
  59. Van Cleve K, Viereck LA, Schlentner RL (1971) Accumulation of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. Arct Alp Res 3:101–114CrossRefGoogle Scholar
  60. Van Cleve K, Oliver L, Schlentner RE, Viereck LA, Dyrness CT (1983) Productivity and nutrient cycling in taiga forest ecosystems. Can J For Res 13:747–766CrossRefGoogle Scholar
  61. van Groenigen K-J, Six J, Hungate BA, de Graaff M-A, Van Breemen N, Van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci 103:6571–6574CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  63. Whiteley JA, Gonzalez A (2016) Biotic nitrogen fixation in the bryosphere is inhibited more by drought than warming. Oecologia 181:1243–1258CrossRefPubMedGoogle Scholar
  64. Zackrisson AO, Deluca TH, Nilsson M, Sellstedt A, Berglund LM, Zackrisson O (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334CrossRefGoogle Scholar
  65. Zackrisson O, Deluca TH, Gentili F, Sellstedt A, Jäderlund A (2009) Nitrogen fixation in mixed Hylocomium splendens moss communities. Oecologia 160:309–319CrossRefPubMedGoogle Scholar
  66. Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B (2002) The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the High Arctic, Svalbard. Arctic Antarct Alp Res 34:293CrossRefGoogle Scholar
  67. Zielke M, Solheim B, Spjelkavik S, Olsen RA (2005) Nitrogen fixation in the High Arctic: role of vegetation and environmental conditions. Arctic Antarct Alp Res 37:372–378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of SaskatchewanSaskatoonCanada
  2. 2.Center for Ecosystem Science and Society Flagstaff (AZ)Northern Arizona UniversityFlagstaffUSA
  3. 3.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations