Plant traits shape the effects of tidal flooding on soil and plant communities in saltmarshes

Abstract

Saltmarshes are recognised worldwide to be among the most complex ecosystems, where several environmental factors concur to sustain their fragile functioning. Among them, soil–plant interactions are pivotal but often overlooked. The aim of this work was to use a structural equation modelling (SEM) approach to get new insight into soil–plant interactions, focusing on the effect of plant traits and abundance on soil, and test the effect of soil and/or plants on the entire community, monitoring changes in plant richness. The target halophytes Limonium narbonense and Sarcocornia fruticosa were sampled in the Marano and Grado lagoon (northern Adriatic Sea). Basal leaves of L. narbonense and green shoots of S. fruticosa were used to estimate plant growth, while the abundance of both species was used as a proxy of species competition. SEM was applied to test relationships between predictors and response variables in a single causal network. The flooding period (hydroperiod) negatively affected plant growth and soil properties, whereas plants decreased the intensity of soil reduction. Flooding did not directly affect species abundance or diversity, whose changes were instead driven by plant traits. The direct relationships between plant traits and species richness highlighted that species competition could be even more important than environmental stresses in defining plant diversity and zonation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Álvarez-Rogel J, Ariza FA, Silla RO (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20:357–372

    Article  Google Scholar 

  2. Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42(1–2):55–72

    Article  Google Scholar 

  3. Angiolini C, Landi M, Pieroni G, Frignani F, Finoia MG, Gaggi C (2013) Soil chemical features as key predictors of plant community occurrence in a Mediterranean coastal ecosystem. Estuar Coast Shelf Sci 119:91–100

    Article  CAS  Google Scholar 

  4. Belay TA, Moe SR (2015) Assessing the effects of woody plant traits on understory herbaceous cover in a semiarid rangeland. Environ Manage 56(1):165–175

    Article  PubMed  Google Scholar 

  5. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  PubMed  CAS  Google Scholar 

  6. Boesch DF, Josselyn MN, Mehta AJ, Morris JT, Nuttle WK, Simenstad CA, Swift DJP (1994) Scientific assessment of coastal wetland loss, restoration and management in Louisiana. J Coast Res 20:103

    Google Scholar 

  7. Bonanomi G, Stinca A, Chirico GB, Ciaschetti G, Saracino A, Incerti G (2016) Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient. Funct Ecol 30(7):1216–1226

    Article  Google Scholar 

  8. Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqurean JW, Madden CJ (2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol 93(1):148–158

    Article  CAS  Google Scholar 

  9. Boscutti F, Marcorin I, Sigura M, Bressan E, Tamberlich F, Vianello A, Casolo V (2015) Distribution modeling of seagrasses in brackish waters of Grado-Marano lagoon (Northern Adriatic Sea). Estuar Coast Shelf Sci 164:183–193

    Article  Google Scholar 

  10. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  11. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965

    Article  Google Scholar 

  12. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  PubMed  CAS  Google Scholar 

  13. Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytol 179:964–974

    Article  PubMed  CAS  Google Scholar 

  14. Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated check-list of the italian vascular flora. Palombi ed, Roma

    Google Scholar 

  15. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51(4):335–380

    Article  Google Scholar 

  16. Cronk JK, Fennessy MS (2016) Wetland plants: biology and ecology. CRC Press LLC, Washington DC, p 482

    Google Scholar 

  17. Davy AJ, Brown MJ, Mossman HL, Grant A (2011) Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes. J Ecol 99(6):1350–1357

    Article  CAS  Google Scholar 

  18. De Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, Janecek S, Lêps J (2011) Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol Evol 2:163–174

    Article  Google Scholar 

  19. Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474

    Article  Google Scholar 

  20. Eaton AD, Clesceri SL, Greenberg AE (1995) Standard methods for the examination of water and wastewater, 19th edn. Am Public Health Assoc, Washington DC

    Google Scholar 

  21. Elmore AJ, Engelhardt KA, Cadol D, Palinkas CM (2016) Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence. Ecol Appl. https://doi.org/10.1890/14-1970

    PubMed  Article  Google Scholar 

  22. Ford H, Garbutt A, Ladd C, Malarkey J, Skov MW (2016) Soil stabilization linked to plant diversity and environmental context in coastal wetlands. J Veg Sci 27(2):259–268

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fox J, Weisberg S (2011) An R Companion to Applied Regression. Sage Publications, Thousand Oaks

    Google Scholar 

  24. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

    Google Scholar 

  25. Grace JB, Keeley JE (2006) A structural equation model analysis of postfire plant diversity in California shrublands. Ecol Appl 16(2):503–514

    Article  PubMed  Google Scholar 

  26. Grace JB, Pugesek BH (1997) A structural equation model of plant species richness and its application to a coastal wetland. Am Nat 149:436–460

    Article  Google Scholar 

  27. Grace JB, Anderson MT, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689

    Article  PubMed  Google Scholar 

  28. Hacker SD, Bertness MD (1999) Experimental evidence for factors maintaining plant species diversity in a New England salt marsh. Ecology 80(6):2064–2073

    Article  Google Scholar 

  29. Hegazy AK (1992) Age-specific survival, mortality and reproduction, and prospects for conservation of Limonium delicatulum. J Appl Ecol 29:549–557

    Article  Google Scholar 

  30. Herben T, Nováková Z, Klimesová J (2014) Clonal growth and plant species abundance. Ann Bot 114:377–388

    Article  PubMed  PubMed Central  Google Scholar 

  31. Howes BL, Teal JM (1994) Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance. Oecologia 97(4):431–438

    Article  PubMed  CAS  Google Scholar 

  32. Huckle JM, Marrs RH, Potter JA (2002) Interspecific and intraspecific interactions between salt marsh plants: integrating the effects of environmental factors and density on plant performance. Oikos 96:307–319

    Article  Google Scholar 

  33. Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96(4):501–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Article  Google Scholar 

  35. Keddy PA, Shipley B (1989) Competitive hierarchies in herbaceous plant communities. Oikos 54:234–241

    Article  Google Scholar 

  36. Klimešová J, Doležal J, Prach K, Košnar J (2012) Clonal growth forms in Arctic plants and their habitat preferences: a study from Petuniabukta, Spitsbergen. Pol Polar Res 33(4):421–442

    Article  Google Scholar 

  37. Koch MS, Erskine JM (2001) Sulfide as a phytotoxin to the tropical seagrass Thalassia testudinum: interactions with light, salinity and temperature. J Exp Mar Biol Ecol 266:81–95

    Article  CAS  Google Scholar 

  38. Koretsky CM, Haveman M, Cuellar A, Beuving L, Shattuck T, Wagner M (2008) Influence of Spartina and Juncus on saltmarsh sediments. I. Pore water geochemistry. Chem Geol 255(1):87–99

    Article  CAS  Google Scholar 

  39. Lamb EG, Shirtliffe S, May W (2011) Structural equation modeling in the plant sciences: an example using yield components in oat. Can J Plant Sci 91:603–619

    Article  Google Scholar 

  40. Lang F, von der Lippe M, Schimpel S, Scozzafava-Jaeger T, Straub W (2010) Topsoil morphology indicates bio-effective redox conditions in Venice salt marshes. Estuar Coast Shelf Sci 87(1):11–20

    Article  CAS  Google Scholar 

  41. Langlois E, Bonis A, Bouzillé JB (2003) Sediment and plant dynamics in saltmarshes pioneer zone: Puccinellia maritima as a key species? Estuar Coast Shelf Sci 56:239–249

    Article  Google Scholar 

  42. Lavorel S, Gamier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  43. Lefcheck JS (2016) Piecewise SEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579

    Article  Google Scholar 

  44. Lundholm J, Heim A, Tran S, Smith T (2014) Leaf and life history traits predict plant growth in a green roof ecosystem. PLoS ONE 9(6):e101395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Marani M, Lanzoni S, Silvestri S, Rinaldo A (2004) Tidal landforms, patterns of halophytic vegetation and the fate of the lagoon of Venice. J Mar Syst 51(1):191–210

    Article  Google Scholar 

  46. Navarro T, Oualidi JE, Taleb MS, Pascual V, Cabezudo B, Milla R (2010) Leaf patterns, leaf size and ecologically related traits in high Mediterranean mountain on the Moroccan High Atlas. Plant Ecol 210:275–290

    Article  Google Scholar 

  47. Noe GB, Zedler JB (2001) Spatio-temporal variation of salt marsh seedling establishment in relation to the abiotic and biotic environment. J Veg Sci 12(1):61–74

    Article  Google Scholar 

  48. Ozinga WA, Romermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminee JHJ, Hennekens SM, Thompson K, Poschlod P, Kleyer M, Bakker JP, van Groenendael JM (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74

    Article  PubMed  Google Scholar 

  49. Pedersen O, Sand-Jensen K, Revsbech NP (1995) Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna. Ecology 76:1536–1545

    Article  Google Scholar 

  50. Pedersen O, Vos H, Colmer TD (2006) Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata. Plant Cell Env 29(7):1388–1399

    Article  CAS  Google Scholar 

  51. Pedhazur EJ (1982) Multiple regression in behavioral research: Explanation and prediction. Holt, Rinehart and Winston, New York

    Google Scholar 

  52. Pellegrini E, Konnerup D, Winkel A, Casolo V, Pedersen O (2017) Internal tissue aeration in two halophytes of the Mediterranean region, during partial and complete submergence. Funct Plant Biol 44:867–876

    Article  Google Scholar 

  53. Pennings SC, Callaway RM (1992) Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73(2):681–690

    Article  Google Scholar 

  54. Pennings SC, Grant MB, Bertness MD (2005) Plant zonation in low latitude salt marshes: disentangling the roles of flooding, salinity and competition. J Ecol 93(1):159–167

    Article  Google Scholar 

  55. Piernik A (2003) Inland halophilous vegetation as indicator of soil salinity. Basic Appl Ecol 4(6):525–536

    Article  Google Scholar 

  56. Pottier J, Marrs RH, Bédécarrats A (2007) Integrating ecological features of species in spatial pattern analysis of a plant community. J Veg Sci 18(2):223–230

    Article  Google Scholar 

  57. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  58. Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Washington DC, p 800

    Google Scholar 

  59. Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos EM, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100(3):555–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Reed DJ (1990) The impact of sea-level rise on coastal salt marshes. Prog Phys Geog 14(4):465–481

    Article  Google Scholar 

  61. Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  62. Sánchez JM, Otero XL, Izco J (1998) Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of Northwest Spain. Plant Ecol 136(1):1–8

    Article  Google Scholar 

  63. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Schreiber JB, Amaury N, Frances KS, Barlow EA, King J (2006) Reporting structural equation modeling and confirmatory factor analysis results: a review. J Educ Res 99(6):323–338

    Article  Google Scholar 

  65. Schurr FM, Bond WJ, Midgley GF, Higgins SI (2005) A mechanistic model for secondary seed dispersal by wind and its experimental validation. J Ecol 93:1017–1028

    Article  Google Scholar 

  66. Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368

    Article  PubMed  Google Scholar 

  67. Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf Sci 62(1):119–130

    Article  CAS  Google Scholar 

  68. Treydte AC, Grant CC, Jeltsch F (2009) Tree size and herbivory determine below-canopy grass quality and species composition in savannahs. Biodivers Conserv 18:3989–4002

    Article  Google Scholar 

  69. Ungar IA (1998) Are biotic factors significant in influencing the distribution of halophytes in saline habitats? Bot Rev 64(2):176–199

    Article  Google Scholar 

  70. van Kleunen M, Fischer M, Schmid B (2001) Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos 94:515–524

    Article  Google Scholar 

  71. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892

    Article  Google Scholar 

  72. Vile D, Shipley B, Garnier E (2006) A structural equation model to integrate changes in functional strategies during old‐field succession. Ecology 87 (2):504–517

    Article  PubMed  Google Scholar 

  73. Vittori Antisari L, De Nobili M, Ferronato C, Natale M, Pellegrini E, Vianello G (2016) Hydromorphic to subaqueous soils transitions in the central Grado lagoon (Northern Adriatic Sea, Italy). Estuar Coast Shelf Sci 173:39–48

    Article  CAS  Google Scholar 

  74. Vittori Antisari L, Ferronato C, Pellegrini E, Boscutti F, Casolo V, De Nobili M, Vianello G (2017) Soil properties and plant community relationship in a saltmarsh of the Grado and Marano lagoon (northern Italy). J Soils Sedim 17(7):1862–1873

    Article  CAS  Google Scholar 

  75. Wang Q, Wang CH, Zhao B, Ma ZJ, Luo YQ, Chen JK, Li B (2006) Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biol Invasions 8(7):1547–1560

    Article  Google Scholar 

  76. Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21(5):261–268

    Article  PubMed  Google Scholar 

  77. Wolters M, Garbutt A, Bekker RM, Bakker JP, Carey PD (2008) Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. J App Ecol 45(3):904–912

    Article  Google Scholar 

  78. Zhang KQ, Douglas BC, Leatherman SP (2004) Global warming and coastal erosion. Climatic Change 64:41–58

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Environmental Protection Agency ARPA-FVG (Italy) for logistic support during the field survey, as well as prof. Angelo Vianello for the critical reading of the text.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elisa Pellegrini.

Additional information

Communicated by Julie C. Zinnert.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pellegrini, E., Boscutti, F., De Nobili, M. et al. Plant traits shape the effects of tidal flooding on soil and plant communities in saltmarshes. Plant Ecol 219, 823–835 (2018). https://doi.org/10.1007/s11258-018-0837-z

Download citation

Keywords

  • Plant diversity
  • Redox potential
  • Waterlogging
  • Plant–plant interaction
  • Species richness