Skip to main content

Advertisement

Log in

Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Ecological processes are centered to water availability in drylands; however, less known nutrient stoichiometry can help explain much of their structure and ecological interactions. Here we look to the foliar stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) of 38 dominant plant species from the Sonoran Desert, grouped in four different functional types to describe ecological characteristics and processes. We found that foliar N, C:N, C:P, and N:P stoichiometric ratios, but not P, were higher than those known to most other ecosystems and indicate P but not N limitations in leaves. Biological N fixers (BNF) had even higher leaf N concentrations, but bio-elemental concentrations and stoichiometry ratios were not different to other non-N-fixing legume species which underscores the need to understand the physiological mechanisms for high N, and to how costly BNF can succeed in P-limiting drylands environments. Stoichiometry ratios, and to lesser extent elemental concentrations, were able to characterize BNF and colonizing strategies in the Sonoran Desert, as well as explain leaf attribute differences, ecological processes, and biogeochemical niches in this dryland ecosystem, even when no direct reference is made to other water-limitation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MA, Turnbull TL, Sprent JI, Buchmann N (2016) Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proc Natl Acad Sci 113:4098–4103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    CAS  Google Scholar 

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66

    Article  Google Scholar 

  • Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–299

    Article  Google Scholar 

  • Austin AT (2011) Has water limited our imagination for aridland biogeochemistry? Trends Ecol Evol 26:229–235

    Article  PubMed  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Belnap J, Prasse R, Harper KT (2001) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: Structure, function, and management. Springer, Berlin, pp 281–300

    Chapter  Google Scholar 

  • Berdugo M, Soliveres S, Maestre FT (2014) Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17:1242–1256

    Article  CAS  Google Scholar 

  • Brito-Castillo L, Crimmins MA, Díaz SC (2010) Clima. In: Molina-Freaner FE, Van Devender TR (eds) Diversidad Biológica de Sonora. UNAM - CONABIO, México, D. F., pp 73–96

    Google Scholar 

  • Brown DE (1982) Biotic communities of the American Southwest.- United States and Mexico. Desert Plants 4:1–342

    CAS  Google Scholar 

  • Castellanos AE, Bravo LC, Koch GW, Llano JM, Lopez D, Mendez R, Rodriguez JC, Romo JR, Sisk T, Yanes G (2010) Impactos Ecologicos por el Uso del Terreno en el Funcionamiento de Ecosistemas Aridos Semi-Aridos de Sonora. In: Molina-Freaner F, Van Devender TR (eds) Diversidad Biologica del Estado de Sonora. CONABIO - UNAM, México, D. F., pp 157–186

    Google Scholar 

  • Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200:950–965

    Article  PubMed  CAS  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  PubMed  CAS  Google Scholar 

  • COTECOCA (2002) Diagnóstico de los agostaderos del Estado de Sonora. COTECOCA, Hermosillo, p 52

    Google Scholar 

  • Cramer M, Hawkins H, Verboom G (2009) The importance of nutritional regulation of plant water flux. Oecologia 161:15–24

    Article  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceição AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Baquerizo M, Eldridge DJ, Maestre FT, Ochoa V, Gozalo B, Reich PB, Singh BK (2018) Aridity decouples C:N: P stoichiometry across multiple trophic levels in terrestrial ecosystems. Ecosystems 21:459–468

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra FA, Carrillo Y, Aspinwall MJ, Maier C, Canarini A, Tahaei H, Choat B, Tissue DT (2016) Water, nitrogen and phosphorus use efficiencies of four tree species in response to variable water and nutrient supply. Plant Soil 406:187–199

    Article  CAS  Google Scholar 

  • Dregne HE, Chou N-T (1992) Global desertification dimensions and costs. In: Dregne H (ed) Degradation and restoration of arid lands. Texas Tech University, Lubbock

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608

    Article  PubMed  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  PubMed  Google Scholar 

  • Evenari M, Noy-Meir I, Goodall DW (eds) (1985) Hot deserts and shrublands. Elsevier, Amsterdam

    Google Scholar 

  • Felker P, Clark PR (1980) Nitrogen fixation (acetylene reduction) and cross inoculation in 12 Prosopis (mesquite) species. Plant Soil 57:177–186

    Article  CAS  Google Scholar 

  • Felker P, Clark PR (1981) Nodulation and nitrogen fixation (acetylene reduction) in desert ironwood (Olneya tesota). Oecologia 48:292–293

    Article  PubMed  Google Scholar 

  • Field CB, Merino J, Mooney HA (1983) Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia 60:384–389

    Article  PubMed  CAS  Google Scholar 

  • Field CB, Randerson JT, Malmstrom CM (1995) Global net primary production - combining ecology and remote-sensing. Remote Sens Environ 51:74–88

    Article  Google Scholar 

  • Funk JL (2013) The physiology of invasive plants in low-resource environments. Conserv Physiol 1:1–17

    Article  Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081

    Article  PubMed  CAS  Google Scholar 

  • Funk JL, Glenwinkel LA, Sack L (2013) Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species. PLoS ONE 8:e64502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fyllas NM, Patino S, Baker TR, Bielefeld Nardoto G, Martinelli LA, Quesada CA, Paiva R, Schwarz M, Horna V, Mercado LM (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708

    Article  Google Scholar 

  • Harper JL (1989) The value of a leaf. Oecologia 80:53–58

    Article  PubMed  CAS  Google Scholar 

  • He M, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:924–931

    Article  PubMed  CAS  Google Scholar 

  • He J-S, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008) Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–310

    Article  PubMed  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635

    Article  Google Scholar 

  • Houlton BZ, Wang Y-P, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330

    Article  PubMed  CAS  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268

    Article  PubMed  Google Scholar 

  • Ignace DD, Huxman TE, Weltzin JF, Williams DG (2007) Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert. Oecologia 152:401–413

    Article  PubMed  Google Scholar 

  • INEGI (2000) Inventario Forestal Nacional Serie III. INEGI

  • INIFAP-CONABIO (2001) Edafología, Esc: 1:250,000. CONABIO, México, D.F., p. Edafología. Escalas 1:250000 y 250001:1000000. México

  • Jackson RB (2000) Belowground processes and global change. Ecol Appl 10:397–398

    Google Scholar 

  • Kajtha K, Wishampel J, Schlesinger WH (1987) Phosphorous and pH tolerances in the germination of the desert shrub Larrea tridentata (Zygophyllaceae). Madroño 34:63–68

    Google Scholar 

  • Killingbeck KT (1993) Nutrient resorption in desert shrubs. Revista Chilena de Historia Natural 66:345–355

    Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Article  Google Scholar 

  • Killingbeck KT, Whitford WG (1996) High foliar nitrogen in desert shrubs: an important ecosystem trait or defective desert doctrine? Ecology 77:1728–1737

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 1441–1450

  • Lal R (2004) Carbon sequestration in dryland ecosystems. Environ Manag 33:528–544

    Article  Google Scholar 

  • Lamont BB, Groom PK, Cowling RM (2002) High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct Ecol 16:403–412

    Article  Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Ecophysiology and stress physiology of functional groups. Springer, Berlin

    Google Scholar 

  • Lea PJ, Morot-Gaudry J-F (eds) (2001) Plant nitrogen. Springer, Berlin

    Google Scholar 

  • Leegood RC, Lea PJ, Adcock MD, Hausler RE (1995) The regulation and control of photorespiration. J Exp Bot 46:1397–1414

    Article  CAS  Google Scholar 

  • Ma J, Liu R, Tang L-S, Lan Z-D, Yi L (2014) A downward CO2 flux seems to have nowhere to go. Biogeosciences 11:6251–6262

    Article  Google Scholar 

  • McCulley RL, Jobbágy EG, Pockman WT, Jackson RB (2004) Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia 141:620–628

    Article  PubMed  CAS  Google Scholar 

  • McDowell SCL (2002) Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). Am J Bot 89:1431–1438

    Article  PubMed  Google Scholar 

  • McKey D (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. Adv Legum Syst 5:211–228

    Google Scholar 

  • McLachlan GJ (2004) Discriminant analysis and statistical pattern recognition. Willey series in probability and statistics. Wiley, New York

    Google Scholar 

  • Menge DNL, Levin SA, Hedin LO (2008) Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc Natl Acad Sci 105:1573–1578

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller-Dumbois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer, New York

    Book  Google Scholar 

  • Niklas KJ, Cobb ED (2005) N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. Am J Bot 92:1256–1263

    Article  PubMed  Google Scholar 

  • Nobel PS, Bobich EG (2002) Plant frequency, stem and root characteristics, and CO2 uptake for Opuntia acanthocarpa: elevational correlates in the northwestern Sonoran Desert. Oecologia 130:165–172

    Article  PubMed  Google Scholar 

  • Nobel PS, Loik ME, Meyer RW (1991) Microhabitat and diel tissue acidity changes for two sympatric cactus species differing in growth habit. J Ecol 167–182

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Ogle K, Reynolds JF (2004) Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141:282–294

    Article  PubMed  Google Scholar 

  • Osmond CB, Winter K, Ziegler H (1982) Functional significance of different pathways of CO2 fixation in photosynthesis. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Springer, New York, pp 479–547

    Chapter  Google Scholar 

  • Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340:741–744

    Article  PubMed  CAS  Google Scholar 

  • Patten DT, Dinger BE (1969) Carbon dioxide exchange patterns of cacti from different environments. Ecology 50:686–688

    Article  CAS  Google Scholar 

  • Peñuelas J, Sardans J, Llusia J, Owen SM, Carnicer J, Giambelluca TW, Rezende EL, Waite M, Niinemets U (2010) Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob Chang Biol 16:2171–2185

    Article  Google Scholar 

  • Phillips DA (1980) Efficiency of symbiotic nitrogen fixation in legumes. Annu Rev Plant Physiol 31:29–49

    Article  CAS  Google Scholar 

  • Png GK, Turner BL, Albornoz FE, Hayes PE, Lambers H, Laliberté E (2017) Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. J Ecol 105(5):1246–1255

    Article  CAS  Google Scholar 

  • Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–603

    Article  PubMed  CAS  Google Scholar 

  • Prãvãlie R (2016) Drylands extent and environmental issues. A global approach. Earth Sci Rev 161:259–278

    Article  CAS  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ (2010) Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc Lond B 277:877–883

    Article  CAS  Google Scholar 

  • Reyes-Reyes BG, Zamora-Villafranco E, Reyes-Reyes ML, Frías-Hernandez JT, Olalde-Portugal V, Dendooven L (2003) Decomposition of leaves of huisache (Acacia tortuoso) and mesquite (Prosopis spp) in soil of the central highlands of Mexico. Plant Soil 256:359–370

    Article  CAS  Google Scholar 

  • Rzedowski J (1993) Diversity and origins of the phanerogamic flora of Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Biological diversity of Mexico: origins and distribution. Oxford University Press, New York, pp 129–146

    Google Scholar 

  • Sage RF, Pearcy RW, Seemann JR (1987) The nitrogen use efficiency of C3 and C4 plants III. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L. Plant Physiol 85:355–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sardans J, Peñuelas J (2014) Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”. Plant Ecol 215:441–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sardans J, Peñuelas J, Ogaya R (2008) Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. For Sci. 54:513–522

    Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C: n: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol Evol Syst 14:33–47

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant-soil interactions in deserts. Biogeochemistry 42:169–187

    Article  Google Scholar 

  • Schlesinger WH, Ward TJ, Anderson J (2000) Nutrient losses in runoff from grassland and shrubland habitats in southern New Mexico: II. Field plots. Biogeochemistry 49:69–86

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9:671–675

    Article  CAS  Google Scholar 

  • Shreve F, Wiggins IL (1964) Vegetation and flora of the Sonoran Desert. Stanford University Press, Stanford

    Google Scholar 

  • Sistla SA, Schimel JP (2012) Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol 196:68–78

    Article  PubMed  CAS  Google Scholar 

  • Skujins JJ (1981) Nitrogen cycling in arid ecosystems. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Processes, ecosystem strategies and management impacts. Ecological Bulletin, Stockholm, pp 477–491

    Google Scholar 

  • Sterner RW, Elser J (2002) Ecological stoichiometry. The biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH (1997) The light: nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat 150:663–684

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Wu G, Zhang Y, Zhou X (2016) Leaf N and P stoichiometry of 57 plant species in the Karamori Mountain Ungulate Nature Reserve, Xinjiang, China. J Arid Land 8:935–947

    Article  Google Scholar 

  • Tapia-Torres Y, Elser JJ, Souza V, García-Oliva F (2015) Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil. Soil Biol Biochem 87:34–42

    Article  CAS  Google Scholar 

  • Tschirley FH, Wagle RF, Wagle FF (1964) Growth rate and population dynamics of jumping cholla (Opuntia fulgida Engelm.). J Ariz Acad Sci 3:67–71

    Article  Google Scholar 

  • Valentine AJ, Kleinert A, Benedito VA (2017) Adaptive strategies for nitrogen metabolism in phosphate deficient legume nodules. Plant Sci 256:46–52

    Article  PubMed  CAS  Google Scholar 

  • Van Devender TR, Felger RS, Fishbein M, Molina-Freaner FE, Sánchez-Escalante J, Reina-Guerrero AL (2010) Biodiversidad de plantas vasculares. In: Molina-Freaner F, Van Devender TR (eds) Diversidad Biologica del Estado de Sonora. CONABIO - UNAM, México, D. F., pp 229–262

    Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaptation. Annu Rev Plant Biol 42:373–390

    Article  CAS  Google Scholar 

  • Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220

    Article  Google Scholar 

  • Virginia RA, Jarrell WM (1983) Soil properties in a mesquite-dominated Sonoran Desert ecosystem. Soil Sci Soc Am J 47:138–144

    Article  CAS  Google Scholar 

  • Virginia RA, Jarrell WM, Whitford WG, Freckman DW (1992) Soil biota and soil properties in the surface rooting zone of mesquite (Prosopis glandulosa) in historical and recently desertified Chihuahuan desert habitats. Biol Fert Soils 14:90–98

    Article  CAS  Google Scholar 

  • West NE (1981) Nutrient cycling in desert ecosystems. In: Goodall DW, Perry RA, Howes KMW (eds) Arid-land ecosystems: Structure, functioning and management, vol 2. Cambridge University Press, Cambridge, pp 301–324

    Google Scholar 

  • West NE, Klemmedson JO (1978) Structural distribution of nitrogen in desert ecosystems. In: West NEaJS (ed), Nitrogen in desert ecosystems. US/IBP Synthesis series.9. Dowden, Hutchinson and Ross, Inc, Stroudsburg

  • West NE, Skujins J (1978) Nitrogen in desert ecosystems. US/IBP Synthesis series. 9. Dowden, Hutchinson and Ross, Inc., Stroudsburg

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Wolf AA, Funk JL, Menge DNL (2017) The symbionts made me do it: legumes are not hardwired for high nitrogen concentrations but incorporate more nitrogen when inoculated. New Phytol 213:690–699

    Article  PubMed  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

  • Wu T-G, Yu M-K, Wang GG, Dong Y, Cheng X-R (2012) Leaf nitrogen and phosphorus stoichiometry across forty-two woody species in Southeast China. Biochem Syst Ecol 44:255–263

    Article  CAS  Google Scholar 

  • Yang X, Chi X, Ji C, Liu H, Ma W, Mohhammat A, Shi Z, Wang X, Yu S, Yue M, Tang Z (2016) Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil. Biogeosciences 13:4429–4438

    Article  CAS  Google Scholar 

  • Yuan ZY, Chen HY (2015) Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat Clim Chang 5:465–469

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The manuscript benefited from the reading and suggestions from two anonymous reviewers. AEC and JRRL acknowledge the support of grants from CONABIO (LI005) and CONACYT (CB223525-R and INF2012/1-188387) and support from UNISON to JMLl. Scholarships were granted by CONACYT to IM and JEP for their BSc dissertations. JS and JP acknowledge the support of grants from the European Research Council Synergy ERC-SyG-2013-610028 IMBALANCE-P, the Spanish Government CGL2016-79835-P, and the Catalan Government SGR2014-274. We thank C. Trujillo, R. Méndez, D.E. Moreno, G. Díaz, A.K. Bustamante, and the ecophysiology group for field and lab support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro E. Castellanos.

Additional information

Communicated by Dafeng Hui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellanos, A.E., Llano-Sotelo, J.M., Machado-Encinas, L.I. et al. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert. Plant Ecol 219, 775–788 (2018). https://doi.org/10.1007/s11258-018-0833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-018-0833-3

Keywords

Navigation