Advertisement

Plant Ecology

, Volume 219, Issue 5, pp 517–526 | Cite as

Reduction in primary production followed by rapid recovery of plant biomass in response to repeated mid-season droughts in a semiarid shrubland

  • G. Ónodi
  • Z. Botta-Dukát
  • Gy. Kröel-Dulay
  • E. Lellei-Kovács
  • M. Kertész
Article
  • 125 Downloads

Abstract

The frequency and severity of extreme weather events, including droughts, are expected to increase due to the climate change. Climate manipulation field experiments are widely used tools to study the response of key parameters like primary production to the treatments. Our study aimed to detect the effect of drought on the aboveground biomass and primary production both during the treatments as well as during the whole growing seasons in semiarid vegetation. We estimated aboveground green biomass of vascular plants in a Pannonian sand forest-steppe ecosystem in Hungary. We applied non-destructive field remote sensing method in control and drought treatments. Drought treatment was carried out by precipitation exclusion in May and June, and was repeated in each year from 2002. We measured NDVI before the drought treatment, right after the treatment, and at the end of the summer in 2011 and 2013. We found that the yearly biomass peaks, measured in control plots after the treatment periods, were decreased or absent in drought treatment plots, and consequently, the aboveground net primary production was smaller than in the control plots. At the same time, we did not find general drought effects on all biomass data. The studied ecosystem proved resilient, as the biomass in the drought-treated plots recovered by the next drought treatment. We conclude that the effect of drought treatment can be overestimated with only one measurement at the time of the peak biomass, while multiple within-year measurements better describe the response of biomass.

Keywords

Aboveground net primary production Climate change experiment Drought Multi-seasonal biomass estimation NDVI Semiarid shrubland 

Notes

Acknowledgements

This study was funded by the VULCAN project (EU FP5 Grant EVK2-CT-2000-00094), the INCREASE project (EU FP7 Grant 227628), the Hungarian Scientific Research Fund (OTKA K112576), and the National Research, Development and Innovation Office (GINOP 2.3.3-15-2016-00019). We are grateful to the Kiskunság National Park (Hungary) for the support of our field work. The authors thank the anonymous reviewers of this manuscript for their valuable comments which have helped us to improve the quality of the paper.

Supplementary material

11258_2018_814_MOESM1_ESM.xlsx (9 kb)
Supplementary material 1 (XLSX 9 kb)
11258_2018_814_MOESM2_ESM.xlsx (37 kb)
Supplementary material 2 (XLSX 37 kb)

References

  1. Bartholy J, Pongrácz R (2007) Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Glob Planet Chang 57:83–95CrossRefGoogle Scholar
  2. Bartholy J, Pongrácz R, Matyasovszky I, Schlanger V (2003) 4.7 Expected regional variations and changes of mean and extreme climatology of Eastern/Central Europe. In: Proceedings of the Combined Preprints CD-ROM of the 83rd AMS Annual Meeting. American Meteorological Society, Boston, p 10Google Scholar
  3. Beier C, Emmett B, Gundersen P, Tietema A, Penuelas J, Estiarte M, Gordon C, Gorissen A, Llorens L, Roda F et al (2004) Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems 7:583–597CrossRefGoogle Scholar
  4. Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, Boeck H, Christensen JH, Leuzinger S, Janssens IA et al (2012) Precipitation manipulation experiments–challenges and recommendations for the future. Ecol Lett 15:899–911CrossRefPubMedGoogle Scholar
  5. Boelman NT, Stieglitz M, Griffin KL, Shaver GR (2005) Inter-annual variability of NDVI in response to long-term warming and fertilization in wet sedge and tussock tundra. Oecologia 143:588–597.  https://doi.org/10.1007/s00442-005-0012-9 CrossRefPubMedGoogle Scholar
  6. Brancaleoni L, Gualmini M, Tomaselli M, Gerdol R (2007) Responses of subalpine dwarf-shrub heath to irrigation and fertilization. J Veg Sci 18:337.  https://doi.org/10.1658/1100-9233(2007)18[337:ROSDHT]2.0.CO;2 CrossRefGoogle Scholar
  7. Byrne KM, Lauenroth WK, Adler PB (2013) Contrasting effects of precipitation manipulations on production in two sites within the central grassland region, USA. Ecosystems 16:1039–1051.  https://doi.org/10.1007/s10021-013-9666-z CrossRefGoogle Scholar
  8. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533.  https://doi.org/10.1038/nature03972 CrossRefPubMedGoogle Scholar
  9. Colegrave N, Ruxton GD (2018) Using biological insight and pragmatism when thinking about pseudoreplication. Trends Ecol Evol 33:28–35.  https://doi.org/10.1016/j.tree.2017.10.007 CrossRefPubMedGoogle Scholar
  10. Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Springer, Dordrecht, pp 347–366Google Scholar
  11. Erdős L, Tölgyesi C, Horzse M, Tolnay D, Hurton Á, Schulcz N, Körmöczi L, Lengyel A, Bátori Z (2014) Habitat complexity of the Pannonian forest-steppe zone and its nature conservation implications. Ecol Complex 17:107–118.  https://doi.org/10.1016/j.ecocom.2013.11.004 CrossRefGoogle Scholar
  12. Estiarte M, Vicca S, Peñuelas J, Bahn M, Beier C, Emmett BA, Fay PA, Hanson PJ, Hasibeder R, Kigel J, Kröel-Dulay G, Larsen KS, Lellei-Kovács E, Limousin J-M, Ogaya R, Ourcival J-M, Reinsch S, Sala OE, Schmidt IK, Sternberg M, Tielbörger K, Tietema A, Janssens IA (2016) Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship. Glob Chang Biol 22:2570–2581.  https://doi.org/10.1111/gcb.13269 CrossRefPubMedGoogle Scholar
  13. Fekete G, Molnár Z, Kun A, Botta-Dukát Z (2002) On the structure of the Pannonian forest steppe: grasslands on sand. Acta Zool Hung 48:137–150Google Scholar
  14. Filella I, Penuelas J, Llorens L, Estiarte M (2004) Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens Environ 90:308–318.  https://doi.org/10.1016/j.rse.2004.01.010 CrossRefGoogle Scholar
  15. Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G, Penuelas J, Valentini R (1995) Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol Appl 5:28–41.  https://doi.org/10.2307/1942049 CrossRefGoogle Scholar
  16. Goodin DG, Henebry GM (1997) A technique for monitoring ecological disturbance in tallgrass prairie using seasonal NDVI trajectories and a discriminant function mixture model. Remote Sens Environ 61:270–278.  https://doi.org/10.1016/S0034-4257(97)00043-6 CrossRefGoogle Scholar
  17. Hoover DL, Knapp AK, Smith MD (2014) Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95:2646–2656.  https://doi.org/10.1890/13-2186.1 CrossRefGoogle Scholar
  18. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefPubMedGoogle Scholar
  19. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NYGoogle Scholar
  20. Köchy M, Wilson SD (2004) Semiarid grassland responses to short-term variation in water availability. Plant Ecol 174:197–203.  https://doi.org/10.1023/B:VEGE.0000049098.74147.57 CrossRefGoogle Scholar
  21. Kovács-Láng E (1974) Examination of dynamics of organic matter in a perennial open sandy steppe-meadow (Festucetum vaginatae danubiale) at the Csévharaszt IBP sample area (Hungary). Acta Bot Acad Sci Hung 20:309–326Google Scholar
  22. Kovács-Láng E, Kröel-Dulay G, Kertész M, Fekete G, Bartha S, Mika J, Dobi-Wantuch I, Rédei T, Rajkai K, Hahn I et al (2000) Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30(3):385–407CrossRefGoogle Scholar
  23. Kröel-Dulay G, Ransijn J, Schmidt IK, Beier C, De Angelis P, de Dato G, Dukes JS, Emmett B, Estiarte M, Garadnai J, Kongstad J, Kovács-Láng E, Larsen KS, Liberati D, Ogaya R, Riis-Nielsen T, Smith AR, Sowerby A, Tietema A, Penuelas J (2015) Increased sensitivity to climate change in disturbed ecosystems. Nat Commun 6:6682.  https://doi.org/10.1038/ncomms7682 CrossRefPubMedGoogle Scholar
  24. Lellei-Kovács E, Kovács-Láng E, Kalapos T, Botta-Dukat Z (2008a) Soil respiration and its main limiting factors in a semiarid sand forest-steppe ecosystem-results of a climate simulation experiment. Cereal Res Commun 36:1223–1226Google Scholar
  25. Lellei-Kovács E, Kovács-Láng E, Kalapos T, Botta-Dukát Z, Barabás S, Beier C (2008b) Experimental warming does not enhance soil respiration in a semiarid temperate forest-steppe ecosystem. Commun Ecol 9:29–37CrossRefGoogle Scholar
  26. Lenth RV (2016) Least-squares means: the R package {lsmeans}. J Stat Softw 69:1–33.  https://doi.org/10.18637/jss.v069.i01 CrossRefGoogle Scholar
  27. Mänd P, Hallik L, Peñuelas J, Nilson T, Duce P, Emmett BA, Beier C, Estiarte M, Garadnai J, Kalapos T (2010) Responses of the reflectance indices PRI and NDVI to experimental warming and drought in European shrublands along a north–south climatic gradient. Remote Sens Environ 114:626–636.  https://doi.org/10.1016/j.rse.2009.11.003 CrossRefGoogle Scholar
  28. Miranda JD, Armas C, Padilla FM, Pugnaire FI (2011) Climatic change and rainfall patterns: effects on semi-arid plant communities of the Iberian Southeast. J Arid Environ 75:1302–1309.  https://doi.org/10.1016/j.jaridenv.2011.04.022 CrossRefGoogle Scholar
  29. Molnár Z, Biró M, Bartha S, Fekete G, Dúbravková D, Hajnalová M (2012) Eurasian steppes. In: Werger JAM, van Staalduinen AM (eds) Ecological problems and livelihoods in a changing world. Springer, DordrechtGoogle Scholar
  30. Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114:358–371.  https://doi.org/10.1016/j.biosystemseng.2012.08.009 CrossRefGoogle Scholar
  31. Nagy Z, Pintér K, Czóbel S, Balogh J, Horváth L, Fóti S, Barcza Z, Weidinger T, Csintalan Z, Dinh NQ, Grosz B, Tuba Z (2007) The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agric Ecosyst Environ 121:21–29.  https://doi.org/10.1016/j.agee.2006.12.003 CrossRefGoogle Scholar
  32. Nestola E, Calfapietra C, Emmerton C, Wong C, Thayer D, Gamon J (2016) Monitoring grassland seasonal carbon dynamics, by integrating MODIS NDVI, proximal optical sampling, and eddy covariance measurements. Remote Sens 8:260.  https://doi.org/10.3390/rs8030260 CrossRefGoogle Scholar
  33. Ónodi G, Kertész M, Kovács-Láng E, Ódor P, Botta-Dukát Z, Lhotsky B, Barabás S, Mojzes A, Kröel-Dulay G (2017a) Estimating aboveground herbaceous plant biomass via proxies: the confounding effects of sampling year and precipitation. Ecol Indic 79:355–360.  https://doi.org/10.1016/j.ecolind.2017.04.011 CrossRefGoogle Scholar
  34. Ónodi G, Kröel-Dulay G, Kovács-Láng E, Ódor P, Botta-Dukat Z, Lhotsky B, Barabás S, Garadnai J, Kertész M (2017b) Comparing the accuracy of three non-destructive methods in estimating aboveground plant biomass. Commun Ecol 18:56–62.  https://doi.org/10.1556/168.2017.18.1.7 CrossRefGoogle Scholar
  35. Peñuelas J, Prieto P, Beier C, Cesaraccio C, De Angelis P, de Dato G, Emmett BA, Estiarte M, Garadnai J, Gorissen A et al (2007) Response of plant species richness and primary productivity in shrublands along a north–south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Glob Chang Biol 13:2563–2581CrossRefGoogle Scholar
  36. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017) nlme: Linear and nonlinear mixed effects models. Retrieved from https://CRAN.R-project.org/package=nlme
  37. Pintér K, Barcza Z, Balogh J, Czóbel S, Csintalan Z, Tuba Z, Nagy Z (2008) Interannual variability of grasslands’ carbon balance depends on soil type. Commun Ecol 9:43–48.  https://doi.org/10.1556/ComEc.9.2008.S.7 CrossRefGoogle Scholar
  38. Pontailler J-Y, Hymus GJ, Drake BG (2003) Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques. Can J Remote Sens 29:381–387.  https://doi.org/10.5589/m03-009 CrossRefGoogle Scholar
  39. R Core Team (2017) R: a language and environment for statistical computingGoogle Scholar
  40. Reinsch S, Koller E, Sowerby A, de Dato G, Estiarte M, Guidolotti G, Kovács-Láng E, Kröel-Dulay G, Lellei-Kovács E, Larsen KS, Liberati D, Peñuelas J, Ransijn J, Robinson DA, Schmidt IK, Smith AR, Tietema A, Dukes JS, Beier C, Emmett BA (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Sci Rep 7:43952.  https://doi.org/10.1038/srep43952 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rouse JW, Haas RH, Deering DW, Schell JA, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFCT Type III Final Report, Greenbelt, MD, USAGoogle Scholar
  42. Sala OE, Austin AT (2000) Methods of estimating aboveground net primary productivity. In: Sala OE, Jackson RB, Mooney HA, Howarth RH (eds) Methods in ecosystem science. Springer, Dordrecht, pp 31–43CrossRefGoogle Scholar
  43. Scurlock JMO, Johnson K, Olson RJ (2002) Estimating net primary productivity from grassland biomass dynamics measurements. Glob Chang Biol 8:736–753.  https://doi.org/10.1046/j.1365-2486.2002.00512.x CrossRefGoogle Scholar
  44. Shinoda M, Nachinshonhor GU, Nemoto M (2010) Impact of drought on vegetation dynamics of the Mongolian steppe: a field experiment. J Arid Environ 74:63–69.  https://doi.org/10.1016/j.jaridenv.2009.07.004 CrossRefGoogle Scholar
  45. Tielbörger K, Bilton MC, Metz J, Kigel J, Holzapfel C, Lebrija-Trejos E, Konsens I, Parag HA, Sternberg M (2014) Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat Commun 5:5102.  https://doi.org/10.1038/ncomms6102 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA 110:52–57.  https://doi.org/10.1073/pnas.1207068110 CrossRefPubMedGoogle Scholar
  47. Wang R, Gamon J, Montgomery R, Townsend P, Zygielbaum A, Bitan K, Tilman D, Cavender-Bares J (2016) Seasonal variation in the NDVI–species richness relationship in a prairie grassland experiment (Cedar Creek). Remote Sens 8:1–15.  https://doi.org/10.3390/rs8020128 Google Scholar
  48. Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BAR (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Chang Biol 17:927–942.  https://doi.org/10.1111/j.1365-2486.2010.02302.x CrossRefGoogle Scholar
  49. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 80(329):940–943CrossRefGoogle Scholar
  50. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects modelling for nested data. In: Zuur AF (ed) Mixed effects models and extensions in ecology with R. Springer, Dordrecht, pp 101–142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • G. Ónodi
    • 1
    • 2
  • Z. Botta-Dukát
    • 1
    • 2
  • Gy. Kröel-Dulay
    • 1
    • 2
  • E. Lellei-Kovács
    • 1
  • M. Kertész
    • 1
    • 2
  1. 1.MTA Centre for Ecological Research, Institute of Ecology and BotanyVácrátótHungary
  2. 2.MTA Centre for Ecological Research, GINOP Sustainable Ecosystems GroupTihanyHungary

Personalised recommendations