Plant Ecology

, Volume 219, Issue 5, pp 481–496 | Cite as

Quantified ecology and co-occurrence of Mediterranean woody species in a landscape context

Article
  • 87 Downloads

Abstract

Understanding co-occurrence and ecological affinities of plant species is essential in vegetation and landscape ecology. In a case study, we analysed distribution records with high data density of all commonly occurring tree and shrub species of Crete (Greece) with offshore islands. We present the ecological range of widespread and more range-restricted species in the Mediterranean area, visualising their affinities for macroclimate, topoclimate and geology by means of an ecological heatmap. Complete linkage classification of combined ecological spectra revealed groups of generalist species with broad ecological amplitude, groups related to zonal vegetation and chiefly dependent on elevation, and species of azonal vegetation grouped mainly by topography and substrates. Species and ecological groups with high affinity may be indicative of (a combination of) site features. Our re-evaluation of plant distribution records links plant geographical and ecological information, and thereby complements expert habitat and species assessments. Our case study provides deeper understanding of ecological patterns, and at the same time allows for comparison and extrapolation to other biomes.

Keywords

Ecological heatmap Geospatial data Heatload Location-based geodata extraction Realised niche Topographical wetness index 

Notes

Acknowledgements

EB and FG were supported by the Greek Ministry of Environment and the European Commission in the Natura 2000 mapping and monitoring project, thanks to all contributing authorities and co-workers. RJ was funded by Deutsche Forschungsgemeinschaft (DFG: Scho 2-1, 2-2). Ktimatologio SA gave permission to use their satellite-image service. Prof. W. Greuter (Berlin) generously contributed distribution data of his working group (1981-1987), funded by DFG (Gr 676/3-1). Locations of mountain species were delivered by B. Egli (Schaffhausen, Switzerland) and L. Fazan (Fribourg, Switzerland). Processing of geological data was supported by C. Manthey (Bochum, Germany), C. Kalaitzidis (Chania, Greece) and Prof. U. Kull (Stuttgart, Germany). P. Mahdavi, I. Schmiedel and L. Sutcliffe (all Goettingen, Germany) commented on an earlier manuscript version. The critical comments and suggestions of the editor P. le Roux and three unknown referees helped us to improve the final version of the manuscript significantly.

Supplementary material

11258_2018_810_MOESM1_ESM.pdf (757 kb)
Supplementary material 1 (PDF 757 kb)

References

  1. Abs C, Ewald J, Walentowski H, Winter S (2008) Untersuchungen zur Schattentoleranz von Baumarten auf Grundlage der Datenbank bayerischer Naturwaldreservate. Tuexenia 28:23–40. http://www.lwf.bayern.de/mam/cms04/biodiversitaet/dateien/a80_abs-et al.pdf
  2. Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:402–407.  https://doi.org/10.1016/S0169-5347(00)89156-9 CrossRefPubMedGoogle Scholar
  3. Alvarez N, Thiel-Egenter C, Tribsch A, Holderegger R, Manel S, Schönswetter P, Taberlet P, Brodbeck S, Gaudeul M, Gielly L, Küpfer P, Mansion G, Negrini R, Paun O, Pellecchia M, Rioux D, Schüpfer F, van Loo M, Winkler M, Gugerli F (2009) History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol Lett 12:632–640.  https://doi.org/10.1111/j.1461-0248.2009.01312.x CrossRefPubMedGoogle Scholar
  4. Aronson M, Handel SN, La Puma IP, Clemants SE (2015) Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosyst 18:31–45.  https://doi.org/10.1007/s11252-014-0382-z CrossRefGoogle Scholar
  5. Austin MP, Nicholls AO, Margules CR (1990) Measurement of the realized qualitative niche. Environmental niches of five Eucalyptus species. Ecol Monogr 60:161–177.  https://doi.org/10.2307/1943043 CrossRefGoogle Scholar
  6. Barbéro M, Quézel P (1976) Les groupements forestiers de Grèce Centro-Méridionale. Ecol Medit 2:3–86. http://ecologia-mediterranea.univ-avignon.fr/uploads/media/Ecologia_mediterranea_1976-2_03.pdf
  7. Barbéro M, Quézel P (1980) La végétation forestière de Crète. Ecol Medit 5:175–210. http://ecologia-mediterranea.univ-avignon.fr/uploads/media/Ecologia_mediterranea_1979-5_03.pdf
  8. Barry RG, Blanken P (2016) Microclimate and local climate. Cambridge University Press, New YorkCrossRefGoogle Scholar
  9. Bauer E-M, Bergmeier E (2011) The mountain woodlands of western Crete - plant communities, forest goods, grazing impact and conservation. Phytocoenologia 41:73–105.  https://doi.org/10.1127/0340-269x/2011/0041-0482 CrossRefGoogle Scholar
  10. Bazan G, Marino P, Guarino R, Domina G, Schicchi R (2015) Bioclimatology and vegetation series in Sicily: a geostatistical approach. Ann Bot Fennici 52:1–18.  https://doi.org/10.5735/085.052.0202 CrossRefGoogle Scholar
  11. Bergmeier E (1995) Die Höhenstufung der Vegetation in Südwest-Kreta (Griechenland) entlang eines 2450 m-Transektes. Phytocoenologia 25:317–361CrossRefGoogle Scholar
  12. Bergmeier E (2012) KRITI–the vegetation of Crete database. Biodivers Ecol 4:384.  https://doi.org/10.7809/b-e.00173 CrossRefGoogle Scholar
  13. Bergmeier E, Goedecke F (2017) Platanus orientalis woodlands of Crete–diversity, distribution and conservation status. In: Achille G (ed) Scritti in onore di Franco Pedrotti. Collana Natura e aree protette 31: TEMI, Trento, pp 29–45Google Scholar
  14. Berry ZC, Gotsch SG, Holwerda F, Muñoz-Villers LE, Asbjornsen H (2016) Slope position influences vegetation-atmosphere interactions in a tropical montane cloud forest. Agr Forest Meteorol 221:207–218.  https://doi.org/10.1016/j.agrformet.2016.02.012 CrossRefGoogle Scholar
  15. Bilton MC, Metz J, Tielbörger K (2016) Climatic niche groups. A novel application of a common assumption predicting plant community response to climate change. Perspect Plant Ecol Evol 19:61–69.  https://doi.org/10.1016/j.ppees.2016.02.006 CrossRefGoogle Scholar
  16. Birnbaum P, Ibanez T, Pouteau R, Vandrot H, Hequet V, Blanchard E, Jaffré T (2015) Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island. AoB Plants.  https://doi.org/10.1093/aobpla/plv075 PubMedPubMedCentralGoogle Scholar
  17. Blasi C, Carraza ML, Frondoni R, Rosati L (2000) Ecosystem classification and mapping: a proposal for Italian landscapes. Appl Veg Sci 3:233–242.  https://doi.org/10.2307/1479002 CrossRefGoogle Scholar
  18. Böhling N, Greuter W, Raus T (2002) Zeigerwerte der Gefäßpflanzen der Südägäis (Griechenland). Braun-Blanquetia 32:1–108. http://www.scienzadellavegetazione.it/sisv/libreria/braun-blanquetia/BRBL32.pdf
  19. Bölöni J, Botta-Dukát Z, Illyés E, Molnár Z (2011) Hungarian landscape types: classification of landscapes based on the relative cover of (semi-) natural habitats. Appl Veg Sci 14:537–546.  https://doi.org/10.1111/j.1654-109X.2011.01139.x CrossRefGoogle Scholar
  20. Burrough PA, McDonell RA (1998) Principles of geographical information systems. Oxford University Press, New YorkGoogle Scholar
  21. Byrne D, Pickard AJ (2016) Neogeography and the democratization of GIS. A metasynthesis of qualitative research. Inf Commun Soc 19:1505–1522.  https://doi.org/10.1080/1369118X.2015.1125936 CrossRefGoogle Scholar
  22. Calabrese JM, Certain G, Kraan C, Dormann CF (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob Ecol Biogeogr 23:99–112.  https://doi.org/10.1111/geb.12102 CrossRefGoogle Scholar
  23. Copeland SM, Harrison SP (2015) Identifying plant traits associated with topographic contrasts in a rugged and diverse region (Klamath-Siskiyou Mts, OR, USA). Ecography 38:569–577.  https://doi.org/10.1111/ecog.00802 CrossRefGoogle Scholar
  24. Corney PM, Le Duc MG, Smart SM, Kirby KJ, Bunce R, Marrs RH (2004) The effect of landscape-scale environmental drivers on the vegetation composition of British woodlands. Biol Cons 120:491–505.  https://doi.org/10.1016/j.biocon.2004.03.022 CrossRefGoogle Scholar
  25. Creutzburg N, Drooger CW, Meulenkamp JE, Papastamatiou J, Seidel E, Tataris A (1977) Geological map of Crete (1:200.000). IGME, GreeceGoogle Scholar
  26. Crisp MD, Laffan S, Linder HP, Monro A (2001) Endemism in the Australian flora. J Biogeogr 28:183–198.  https://doi.org/10.1046/j.1365-2699.2001.00524.x CrossRefGoogle Scholar
  27. Décamps H, Décamps O (2001) Mediterranean riparian woodlands. Tour du Valat, ArlesGoogle Scholar
  28. Dimopoulos P, Bergmeier E, Fischer P (2006) Natura 2000 habitat types of Greece evaluated in the light of distribution, threat and responsibility. Biol Environ 106:175–187.  https://doi.org/10.3318/BIOE.2006.106.3.175 Google Scholar
  29. Dimopoulos P, Raus T, Bergmeier E, Constantinidis T, Iatrou G, Kokkini S, Strid A, Tzanoudakis D (2013) Vascular plants of Greece. An annotated checklist. Englera 31:1–372. http://www.jstor.org/stable/24365374
  30. Dimopoulos P, Raus T, Bergmeier E, Constantinidis T, Iatrou G, Kokkini S, Strid A, Tzanoudakis D (2016) Vascular plants of Greece: an annotated checklist Supplement. Willdenowia 46:301–347.  https://doi.org/10.3372/wi.46.46303 CrossRefGoogle Scholar
  31. EEA (2015) Digital Elevation Model over Europe (EU-DEM). http://www.eea.europa.eu/data-and-maps/data/eu-dem. Accessed 14 Mar 2017
  32. Egli BR (1997) A project for the preservation of Zelkova abelicea (Ulmaceae), a threatened endemic tree species from the mountains of Crete. Bocconea 5:505–510. http://www.herbmedit.org/bocconea/5-505.pdf
  33. Egli BR (2000) Forest vegetation of Western Crete. Bot Chron 13:1–21Google Scholar
  34. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams SE, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151.  https://doi.org/10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  35. Ellenberg H (1974) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scripta Geobotanica 9:1–97Google Scholar
  36. ESRI (2013) ArcGIS for desktop: release 10.2. Environmental Systems Research Institute, Redlands, CAGoogle Scholar
  37. European Commission (2013) Interpretation Manual of European Union Habitats—EUR28. European Commission DG Environment. http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/Int_Manual_EU28.pdf
  38. Evans JS, Oakleaf J, Cushman SA, Theobald D (2014) An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, version 2.0-0Google Scholar
  39. Fielding J, Turland NJ (2005) Flowers of Crete. Royal Botanic Gardens, KewGoogle Scholar
  40. Filella I, Penuelas J (2003) Partitioning of water and nitrogen in co-occurring Mediterranean woody shrub species of different evolutionary history. Oecologia 137:51–61.  https://doi.org/10.1007/s00442-003-1333-1 CrossRefPubMedGoogle Scholar
  41. Fois M, Fenu G, Cañadas EM, Bacchetta G (2017) Disentangling the influence of environmental and anthropogenic factors on the distribution of endemic vascular plants in Sardinia. PLoS ONE 12:e0182539.  https://doi.org/10.1371/journal.pone.0182539 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fu P, Rich PM (2002) A geometric solar radiation model with applications in agriculture and forestry. Comput Electron Agr 37:25–35.  https://doi.org/10.1016/S0168-1699(02)00115-1 CrossRefGoogle Scholar
  43. Gessler PE, Moore ID, McKenzie NJ, Ryan PJ (1995) Soil-landscape modelling and spatial prediction of soil attributes. Int J GIS 9:421–432.  https://doi.org/10.1080/02693799508902047 Google Scholar
  44. Ghosh S, Scharenbroch BC, Burcham D, Ow LF, Shenbagavalli S, Mahimairaja S (2016) Influence of soil properties on street tree attributes in Singapore. Urban Ecosyst 19:949–967.  https://doi.org/10.1007/s11252-016-0530-8 CrossRefGoogle Scholar
  45. Goedecke F, Bergmeier E (2017) Ecology and potential distribution of the Cretan endemic tree species Zelkova abelicea. J Mediterr Ecol (accepted)Google Scholar
  46. Greuter W (1967) Beiträge zur Flora der Südägäis 8-9. Bauhinia 3:243–254Google Scholar
  47. Greuter W (1975) Die Insel Kreta–eine geobotanische Skizze. Veröffentlichungen des Geobotanischen Instituts ETH, Stiftung Rübel 55:141–197Google Scholar
  48. Groves RH, Di Castri F (eds) (1991) Biogeography of Mediterranean invasions. Cambridge University Press, CambridgeGoogle Scholar
  49. Guarino R, Domina G, Pignatti S (2012) Ellenberg’s Indicator values for the Flora of Italy—first update: pteridophyta, gymnospermae and monocotyledoneae. Fl Mediterr 22:197–209.  https://doi.org/10.7320/FlMedit22.197 CrossRefGoogle Scholar
  50. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186.  https://doi.org/10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  51. Guisan A, Theurillat J-P, Kienast F (1998) Predicting the potential distribution of plant species in an alpine environment. J Veg Sci 9:65–74.  https://doi.org/10.2307/3237224 CrossRefGoogle Scholar
  52. Hand R, Grossmann A, Lauterbach D (2017) Endemics and their common congener plant species on an East Mediterranean island. A comparative functional trait approach. Plant Ecol 218:139–150.  https://doi.org/10.1007/s11258-016-0673-y CrossRefGoogle Scholar
  53. HGME (1959–2002) Official Geological Maps of Greece 1:50000. Hellenic Institute for Geology and Mineral Exploitation, AthensGoogle Scholar
  54. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  55. Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp 22:415–427CrossRefGoogle Scholar
  56. Jahn R (2003) The phytodiversity of the flora of Kriti (Greece)—a survey of the current state of knowledge. Bocconea 16:845–851. http://www.herbmedit.org/bocconea/16-0845.pdf
  57. Jahn R, Schönfelder P (1995) Exkursionsflora für Kreta. Ulmer, StuttgartGoogle Scholar
  58. Janssen J, Rodwell J, García Criado M, Gubbay S, Haynes T, Nieto A, Sanders N, Calix M (2016) European Red list of habitats. Publications Office of the European Union, LuxembourgGoogle Scholar
  59. Jones CC, Acker SA, Halpern CB (2010) Combining local- and large-scale models to predict the distributions of invasive plant species. Ecol Appl 20:311–326.  https://doi.org/10.1890/08-2261.1 CrossRefPubMedGoogle Scholar
  60. Jouffroy-Bapicot I, Vanniere B, Iglesias V, Debret M, Delarras J-F (2016) 2000 years of grazing history and the making of the Cretan mountain landscape, Greece. PLoS ONE 11:e0156875.  https://doi.org/10.1371/journal.pone.0156875 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kopecký M, Čížková Š (2010) Using topographic wetness index in vegetation ecology. Does the algorithm matter? Appl Veg Sci 13:450–459.  https://doi.org/10.1111/j.1654-109X.2010.01083.x CrossRefGoogle Scholar
  62. Korsch H (1999) Chorologisch-ökologische Auswertungen der Daten der floristischen Kartierung Deutschlands. Schriftenreihe für Vegetationskunde 30:1–200Google Scholar
  63. Kosmas CS, Danalatos NG, Moustakas N, Tsatiris B, Kallianou C, Yassoglou N (1993) The impacts of parent material and landscape position on drought and biomass production of wheat under semi-arid conditions. Soil Technol 6:337–349.  https://doi.org/10.1016/0933-3630(93)90024-9 CrossRefGoogle Scholar
  64. Kozlowski G, Frey D, Fazan L, Egli B, Bétrisey S, Gratzfeld J, Garfì G, Pirintsos S (2014) The Tertiary relict tree Zelkova abelicea (Ulmaceae): distribution, population structure and conservation status on Crete. Oryx 48:80–87.  https://doi.org/10.1017/S0030605312001275 CrossRefGoogle Scholar
  65. Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM, Fox J (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599.  https://doi.org/10.1111/1365-2435.12345 CrossRefGoogle Scholar
  66. Kruckeberg AR (2002) Geology and plant life. The effects of landforms and rock types on plants. University of Washington Press, SeattleGoogle Scholar
  67. Ktimatologio (2016) Digital web map service. Geodetic Department, Ktimatologio S.A. (Hellenic Cadastre), Athens. http://www.ktimatologio.gr
  68. Kull U (2012) Kreta. Sammlung geologischer Führer 107. Gebr. Borntraeger, StuttgartGoogle Scholar
  69. Larcher W (2006) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295.  https://doi.org/10.1080/11263500012331350455 CrossRefGoogle Scholar
  70. Lavergne S, Thompson JD, Garnier E, Debussche M (2004) The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107:505–518.  https://doi.org/10.1111/j.0030-1299.2004.13423.x CrossRefGoogle Scholar
  71. Lechner AM, McCaffrey N, McKenna P, Venables WN, Hunter JT, Goslee S (2016) Ecoregionalization classification of wetlands based on a cluster analysis of environmental data. Appl Veg Sci 19:724–735.  https://doi.org/10.1111/avsc.12248 CrossRefGoogle Scholar
  72. Leuschner C, Meier IC, Hertel D (2006) On the niche breadth of Fagus sylvatica. Soil nutrient status in 50 Central European beech stands on a broad range of bedrock types. Ann Sci 63:355–368.  https://doi.org/10.1051/forest:2006016 CrossRefGoogle Scholar
  73. Lionello P (ed) (2012) The climate of the Mediterranean region. Elsevier Science Pub. Co Inc, AmsterdamGoogle Scholar
  74. Ludwig JA, Tongway DJ (1995) Spatial organisation of landscapes and its function in semi-arid woodlands, Australia. Landsc Ecol 10:51–63.  https://doi.org/10.1007/BF00158553 CrossRefGoogle Scholar
  75. Marcenò C, Guarino R (2015) A test on Ellenberg indicator values in the Mediterranean evergreen woods (Quercetea ilicis). Rend Fis Acc Lincei 26:345–356.  https://doi.org/10.1007/s12210-015-0448-8 CrossRefGoogle Scholar
  76. Matthäs U (1988) Die laubwerfenden Eichenarten Kretas. Cramer, VaduzGoogle Scholar
  77. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606.  https://doi.org/10.1111/j.1654-1103.2002.tb02087.x CrossRefGoogle Scholar
  78. McGarigal K, Tagil S, Cushman SA (2009) Surface metrics. An alternative to patch metrics for the quantification of landscape structure. Landsc Ecol 24:433–450.  https://doi.org/10.1007/s10980-009-9327-y CrossRefGoogle Scholar
  79. Miller AJ, Knouft JH (2006) GIS-based Characterization of the geographic distribution of wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea (Anacardiaceae). Am J Bot 93:1757–1767.  https://doi.org/10.3732/ajb.93.12.1757 CrossRefPubMedGoogle Scholar
  80. Mitrakos K (1980) Plant life under Mediterranean climatic conditions. Port Acta Biol Ser A 16:33–44Google Scholar
  81. Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, Gavilán García R, Chytrý M, Hájek M, Di Pietro R, Iakushenko D, Pallas J, Daniëls F, Bergmeier E, Santos Guerra A, Ermakov N, Valachovič M, Schaminée J, Lysenko T, Didukh YP, Pignatti S, Rodwell J, Capelo J, Weber HE, Solomeshch A, Dimopoulos P, Aguiar C, Hennekens SM, Tichý L (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19(Suppl. 1):3–264.  https://doi.org/10.1111/avsc.12257 CrossRefGoogle Scholar
  82. Neff JC, Reynolds R, Sanford RL, Fernandez D, Lamothe P (2006) Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah. Ecosystems 9:879–893.  https://doi.org/10.1007/s10021-005-0092-8 CrossRefGoogle Scholar
  83. Olthoff A, Martínez-Ruiz C, Alday JG (2016) Distribution patterns of forest species along an Atlantic-Mediterranean environmental gradient. An approach from forest inventory data. Forestry 89:46–54.  https://doi.org/10.1093/forestry/cpv031 CrossRefGoogle Scholar
  84. Parra-Quijano M, Iriondo JM, Torres E (2012) Review. Applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources. Span J Agric Res 10:419–429.  https://doi.org/10.5424/sjar/2012102-303-11 CrossRefGoogle Scholar
  85. Pignatti S, Menegoni P, Pietrosanti S (2005) Bioindicazione attraverso le piante vascolari.Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia 39:1–97. http://www.scienzadellavegetazione.it/sisv/libreria/braun-blanquetia/BRBL39.pdf
  86. Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants. Evidence for phylogenetic conservatism. Proc Biol Sci 268:2383–2389.  https://doi.org/10.1098/rspb.2001.1801 CrossRefPubMedPubMedCentralGoogle Scholar
  87. R Development Core Team (2017) R: a language and environment for statistical computing. r foundation for statistical computing, Vienna, Austria. http://www.R-project.org. Accessed 17 Mar 2017
  88. Rackham O, Moody JA (1996) The making of the Cretan landscape. Manchester University Press, ManchesterGoogle Scholar
  89. Rechinger KH, Rechinger-Moser F (1951) Phytogeographia Aegaea. Akad Wiss Wien, Math-Naturwiss Kl, Denkschr 105 (2.2): 1 208 + tablesGoogle Scholar
  90. Reger B, Häring T, Ewald J (2014) The TRM model of Potential Natural Vegetation in mountain forests. Folia Geobot 49:337–359.  https://doi.org/10.1007/s12224-013-9158-0 CrossRefGoogle Scholar
  91. Rich PM, Dubayah R, Hetrick WA, Saving SC (1994) Using viewshed models to calculate intercepted solar radiation: applications in ecology. American Society for Photogrammetry and Remote Sensing Technical Papers: 524–529Google Scholar
  92. Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942.  https://doi.org/10.1080/10635150701703063 CrossRefPubMedGoogle Scholar
  93. Safford HD, Viers JH, Harrison SP (2005) Serpentine endemism in the California flora. A database of serpentine affinity. Madroño 52:222–257.  https://doi.org/10.3120/0024-9637(2005)52[222:SEITCF]2.0.CO;2 CrossRefGoogle Scholar
  94. Salmerón-Sánchez E, Martínez-Nieto MI, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, de Carrasco CG, Ramos-Miras JJ, Lozano R, Merlo ME, Mota JF (2014) Ecology, genetic diversity and phylogeography of the Iberian endemic plant Jurinea pinnata (Lag.) DC. (Compositae) on two special edaphic substrates. Dolomite and gypsum. Plant Soil 374:233–250.  https://doi.org/10.1007/s11104-013-1857-z CrossRefGoogle Scholar
  95. San-Miguel-Ayanz J, Rigo D de, Caudullo G, Houston Durrant T, Mauri A (eds) (2016) European atlas of forest tree species. Publication Office of the European Union, Luxembourg. http://forest.jrc.ec.europa.eu/european-atlas-of-forest-tree-species
  96. Sattler T, Bontadina F, Hirzel AH, Arlettaz R (2007) Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status. J Appl Ecol 44:1188–1199.  https://doi.org/10.1111/j.1365-2664.2007.01328.x CrossRefGoogle Scholar
  97. Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction. A comparison with field measurements. J Veg Sci 11:225–244.  https://doi.org/10.2307/3236802 CrossRefGoogle Scholar
  98. Schwabe A, Kratochwil A, Pignatti S (2007) Plant indicator values of a high-phytodiversity country (Italy) and their evidence, exemplified for model areas with climatic gradients in the southern inner Alps. Flora - Morphol Distrib Funct Ecol Plants 202(5):339–349Google Scholar
  99. Seidel E, Kreuzer H, Harre W (1982) A late oligocene/early Miocene high pressure belt in the external Hellenides. Geolog Jahrb 23:165–206Google Scholar
  100. Shachak M, Boeken B, Groner E, Kadmon R, Lubin Y, Meron E, Ne’Eman G, Perevolotsky A, Shkedy Y, Ungar ED (2008) Woody species as landscape modulators and their effect on biodiversity patterns. Bioscience 58:209–221.  https://doi.org/10.1641/B580307 CrossRefGoogle Scholar
  101. Slavich E, Warton DI, Ashcroft MB, Gollan JR, Ramp D, Elith J (2014) Topoclimate versus macroclimate. How does climate mapping methodology affect species distribution models and climate change projections? Divers Distrib 20:952–963.  https://doi.org/10.1111/ddi.12216 CrossRefGoogle Scholar
  102. Søndergaard P, Egli BR (2006) Zelkova abelicea (Ulmaceae) in Crete: floristics, ecology, propagation and threats. Willdenowia 36:317–322.  https://doi.org/10.3372/wi.36.36126 CrossRefGoogle Scholar
  103. Sørensen R, Zinko U, Seibert J (2006) On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci 10:101–112.  https://doi.org/10.5194/hess-10-101-2006 CrossRefGoogle Scholar
  104. Suggitt AJ, Platts PJ, Barata IM, Bennie JJ, Burgess MD, Bystriakova N, Duffield S, Ewing SR, Gillingham PK, Harper AB, Hartley AJ, Hemming DL, Maclean IMD, Maltby K, Marshall HH, Morecroft MD, Pearce-Higgins JW, Pearce-Kelly P, Phillimore AB, Price JT, Pyke A, Stewart JE, Warren R, Hill JK (2017) Conducting robust ecological analyses with climate data. Oikos 92:699–708.  https://doi.org/10.1111/oik.04203 Google Scholar
  105. Ter Braak C, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, USAGoogle Scholar
  106. Tsiourlis G, Konstantinidis P, Xofis P (2009) Syntaxonomy and Synecology of Quercus coccifera Mediterranean Shrublands in Greece. J Plant Biol 52:433–447.  https://doi.org/10.1007/s12374-009-9056-4 CrossRefGoogle Scholar
  107. Wang S-J, Li R-L, Sun C-X, Zhang D-F, Li F-Q, Zhou D-Q, Xiong K-N, Zhou Z-F (2004) How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China. Phenomena and mechanisms. Land Degrad Dev 15:123–131.  https://doi.org/10.1002/ldr.591 CrossRefGoogle Scholar
  108. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2016) gplots: various R programming tools for plotting data. R package version 3.0.1. https://CRAN.R-project.org/package=gplots
  109. Zohary M, Orshan G (1965) An outline of the geobotany of crete. Israel J Bot 14:1–49Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Vegetation- and Phytodiversity AnalysisAlbrecht-von-Haller Institute for Plant Science, University of GöttingenGöttingenGermany
  2. 2.GroßschirmaGermany

Personalised recommendations