Skip to main content

Advertisement

Log in

Environmental and anthropogenic determinants of the spread of alien plant species: insights from South Africa’s quaternary catchments

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Alien plants invasion has negative impacts on the structure and functionality of ecosystems. Understanding the determinants of this process is fundamental for addressing environmental issues, such as the water availability in South Africa’s catchments. Both environmental and anthropogenic factors determine the invasion of alien species; however, their relative importance has to be quantified. The aim of this paper was to estimate the importance of 32 explanatory variables in predicting the distribution of the major invasive alien plant species (IAPS) of South Africa, through the use of Species Distribution Models. We used data from the National Invasive Alien Plants Survey, delineated at a quaternary catchment level, coupled with climatic, land cover, edaphic, and anthropogenic variables. Using two-part generalized linear models, we compared the accuracy of two different sets of variables in predicting the spatial distribution of IAPS; the first included environmental correlates alone, and the second included both environmental and anthropogenic variables. Using Random Forest, we explored the relative importance of the variables in producing a map of potential distribution of IAPS. Results showed that the inclusion of anthropogenic variables did not significantly improve model predictions. The most important variables influencing the distribution of IAPS appeared to be the climatic ones. The modeled potential distribution was analyzed in relation to provinces, biomes, and species’ minimum residence time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti A (2002) Categorical Data Analysis. Wiley, New York

    Book  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33(10):1677–1688

    Article  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeog 16(6):743–753

    Article  Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157(2–3):101–118

    Article  Google Scholar 

  • Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38(1):1–8

    Article  Google Scholar 

  • Balmford A (2003) Conservation planning in the real world: South Africa shows the way. Trends Ecol Evol 18(9):435–438

    Article  Google Scholar 

  • Breiman L (2001) Random Forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10(8):701–709

    Article  CAS  PubMed  Google Scholar 

  • Calder I, Dye P (2001) Hydrological impacts of invasive alien plants. Land Use W Resour Res 1:1–12

    Google Scholar 

  • Castro SA, Figueroa JA, Muñoz-Schick M, Jaksic FM (2005) Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Divers Distrib 11(3):183–191

    Article  Google Scholar 

  • Chytrý M, Jarošík V, Pyšek P, Hájek O, Knollová I, Tichý L, Danihelka J (2008) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89(6):1541–1553

    Article  PubMed  Google Scholar 

  • Coudun C, Gégout JC, Piedallu C, Rameau JC (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. J Biogeogr 33(10):1750–1763

    Article  Google Scholar 

  • Council for Scientific and Industrial Research and Agricultural Research Council (2005) National land cover database (2000) Council for Scientific and Industrial Research and Agricultural Research Council. Pretoria, South Africa

    Google Scholar 

  • Cullis J, Gorgens A, Marais C (2007) A strategic study of the impact of invasive alien plants in the high rainfall catchments and riparian zones of South Africa on total surface water yield. Water SA 33(1):35–42

    Google Scholar 

  • de Lange WJ, van Wilgen BW (2010) An economic assessment of the contribution of biological control to the management of invasive alien plants and to the protection of ecosystem services in South Africa. Biol Invasions 12:4113–4124

    Article  Google Scholar 

  • del Barrio G, Harrison PA, Berry PM, Butt N, Sanjuan ME, Pearson RG, Dawson T (2006) Integrating multiple modelling approaches to predict the potential impacts of climate change on species’ distributions in contrasting regions: comparison and implications for policy. Environ Sci Policy 9(2):129–147

    Article  Google Scholar 

  • Di Lorenzo B, Farcomeni A, Golini N (2011) A Bayesian model for presence-only semicontinuous data, with application to prediction of abundance of Taxus Baccata in two Italian regions. J Agric, Biol Environ Stat 16(3):339–356

    Article  Google Scholar 

  • Dormann CF (2007) Promising the future? Global change projections of species distributions. Basic Appl Ecol 8(5):387–397

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol, Evol Systematics 40(1):677–697

    Article  Google Scholar 

  • Fey M (2010) Soils of South Africa. Cambridge University Press, Cambridge, p 287

    Book  Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species - the American bullfrog. Divers Distrib 13(4):476–485

    Article  Google Scholar 

  • Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16(3):321–330

    Article  Google Scholar 

  • Funk JL, Sandish RJ, Stock W, Valladares F (2016) Plant functional traits of dominant native and invasive species in mediterranean- climate ecosystems. Ecology 97(1):75–83

    Article  PubMed  Google Scholar 

  • Gassó N, Sol D, Pino J, Dana ED, Lloret F, Sanz-Elorza M, Sobrino E, Vilà M (2009) Exploring species attributes and site characteristics to assess plant invasions in Spain. Divers Distrib 15(1):50–58

    Article  Google Scholar 

  • Gassó N, Thuiller W, Pino J, Vilà M (2012) Potential distribution range of invasive plant species in Spain. NeoBiota 12:25–40

    Article  Google Scholar 

  • Giglio L, Loboda T, Roy DP, Quayle B, Justice CO (2009) An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens Environ 113:408–420

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    Article  Google Scholar 

  • Henderson L (1999) The Southern African Plant Invaders Atlas (SAPIA) and its contribution to biological weed control. Afr Entomol Memoir 1:159–163

    Google Scholar 

  • Henderson L, Wells MJ (1986) Alien plant invasions in the grassland and savanna biomes. In: Macdonald IAW, Kruger FJ, Ferrar AA (eds) The ecology and management of biological invasions in Southern Africa. Oxford University Press, Cape Town, pp 109–117

    Google Scholar 

  • Hengl T, Heuvelink GBM, Kempen B, Leenaars JGB, Walsh MG, Shepherd KD, Sila A, MacMillan RA, Mendes de Jesus J, Tamene L, Tondoh JE (2015) Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS ONE 10:e0125814

    Article  PubMed  PubMed Central  Google Scholar 

  • Higgins SI, Richardson DM (1996) A review of models of alien plant spread. Ecol Model 87:249–265

    Article  Google Scholar 

  • Higgins SI, Richardson DM, Cowling RM (2000) Using a dynamic landscape model for planning the management of alien plant invasions. Ecol Appl 10(6):1833–1848

    Article  Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12(12):2272–2281

    Article  Google Scholar 

  • Hobbs RJ (2004) The Working for water programme in South Africa: the science behind the success. Divers Distrib 10(5–6):501–503

    Article  Google Scholar 

  • Ibáñez I, Silander JA, Wilson AM, La Fleur N, Tanaka N, Tsuyama I (2009) Multivariate forecasts of potential distributions of invasive plant species. Ecol Appl 19(2):359–375

    Article  PubMed  Google Scholar 

  • Kotzé JDF, Beukes BH, Van den Berg EC, Newby TS (2010) National Invasive Alien Plant Survey. Report Number: GW/A/(2010)/21. Agricultural Research Council: Institute for Soil, Climate and Water, Pretoria

  • Kriticos DJ, Watt MS, Potter KJB, Manning LK, Alexander NS, Tallent-Halsell N (2011) Managing invasive weeds under climate change: considering the current and potential future distribution of Buddleja davidii. Weed Res 51(1):85–96

    Article  Google Scholar 

  • Land Type Survey Staff 1972–2006 (2006) Land Types of South Africa: Maps (69 sheets) and Memoirs (39 books). ARC-Institute for Soil, Climate and Water, Pretoria

    Google Scholar 

  • Le Maitre DC, van Wilgen BW, Chapman RA, McKelly DH (1996) Invasive plants and water resources in the Western Cape Province, South Africa: modelling the consequences of a lack of management. J Appl Ecol 33:161–172

    Article  Google Scholar 

  • Le Maitre DC, van Wilgen BW, Cowling RM (1998) Ecosystem services, efficiency, sustainability and equity: South Africa’s Working for Water programme. Trends Ecol Evol 13(9):378

    Article  PubMed  Google Scholar 

  • Le Maitre DC, Versfeld DB, Chapman R (2000) The impact of invading alien plants on surface water resources in South Africa: a preliminary assessment. Water SA 26(3):397–408

    Google Scholar 

  • Le Maitre DC, Richardson DM, Chapman RA (2004) Alien plant invasions in South Africa: driving forces and the human dimension. S Afr J Sci 100:103–112

    Google Scholar 

  • Le Maitre DC, Forsyth GG, Dzikiti S, Gush MB (2016) Estimates of the impacts of invasive alien plants on water flows in South Africa. Water Sa 42(4):659–672

    Article  Google Scholar 

  • Leathwick JR (1998) Are New Zealand’s Nothofagus species in equilibrium with their environment? J Veg Sci 9:719–732

    Article  Google Scholar 

  • Luoto M, Heikkinen RK, Pöyry J, Saarinen K (2006) Determinants of the biogeographical distribution of butterflies in boreal regions. J Biogeogr 33(10):1764–1778

    Article  Google Scholar 

  • Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78(1–2):107–121

    Article  Google Scholar 

  • Maestre FT, Cortina J (2004) Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? For Ecol Manag 198(1–3):303–317

    Article  Google Scholar 

  • Mallory S, Versfeld D, Nditwani T (2011) Estimating stream-flow reduction due to invasive alien plants: Are we getting it right? Techniques used to estimate streamflow reduction due invasive alien plants. Proceedings of the 15th SANCIAHS Symposium, Grahamstown, pp. 1–11, 12–14 Sept 2011

  • Marais C, van Wilgen BW, Stevens D (2004) The clearing of invasive alien plants in South Africa: a preliminary assessment of costs and progress. S Afr J Sci 100:97–103

    Google Scholar 

  • McConnachie MM, Cowling RM, van Wilgen BW, McConnachie DA (2012) Evaluating the cost-effectiveness of invasive alien plant clearing: a case study from South Africa. Biol Conserv 155:128–135

    Article  Google Scholar 

  • Milton SJ, Dean WR (2010) Plant invasions in arid areas: special problems and solutions: a South African perspective. Biol Invasions 12:3935–3948

    Article  Google Scholar 

  • Mucina L, Rutherford MC (2006) ‘The vegetation of South Africa, Lesotho and Swaziland’, Sterlitzia 19. S Afr Natl Biodivers Inst, Pretoria

    Google Scholar 

  • Nel JL, Richardson DM, Rouget M, Mgidi TN, Mdzeke N, Le Maitre DC, van Wilgen BW, Schonegevel L, Henderson L, Neser S (2004) Proposed classification of invasive alien plant species in South Africa: towards prioritizing species and areas for management action. S Afr J Sci 100:53–64

    Google Scholar 

  • Ohlemuller R, Walker S, Bastow Wilson J (2006) Local vs regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species. Oikos 112(3):493–501

    Article  Google Scholar 

  • Parsons JJ (1972) Spread of African pasture grasses to the American tropics. J Rang Manage 25:12–17

    Article  Google Scholar 

  • Pauchard A, Alaback BP (2004) Influences of evaluation, land use and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv Biol 18(1):238–248

    Article  Google Scholar 

  • Pearman PB, Randin CF, Broennimann O, Vittoz P, van der Knaap WO, Engler E, Le Lay G, Zimmermann NE, Guisan A (2008) Prediction of plant species distributions across six millennia. Ecol Lett 11(4):357–369

    Article  PubMed  Google Scholar 

  • Pearson RG (2010) Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv 3:54–89

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27(3):285–298

    Article  Google Scholar 

  • Pejchar L, Mooney H (2009) Invasive species, ecosystem services and human well-being. Trend Ecol Evol 24(9):497–504

    Article  Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51(5):363–371

    Article  Google Scholar 

  • Pino J, Font X, Carbó J, Jové M, Pallarès L (2005) Large-scale correlates of alien plant invasion in Catalonia (NE of Spain). Biol Conserv 122(2):339–350

    Article  Google Scholar 

  • R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Change Biol 15(6):1557–1569

    Article  Google Scholar 

  • Rejmánek M (2000) Invasive plants: approaches and predictions. Austral Ecol 25(5):497–506

    Article  Google Scholar 

  • Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species - a global review. Divers Distrib 17(5):788–809

    Article  Google Scholar 

  • Richardson DM, Macdonald IAW, Hoffmann JH, Henderson L (1997) Alien plant invasions. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of Southern Africa. Cambridge University Press, Cambridge (United Kingdom), pp 534–570

    Google Scholar 

  • Richardson DM, Rouget M, Ralston SJ, Cowling RM, Van Rensburg BJ, Thuiller W (2005) Species richness of alien plants in South Africa: environmental correlates and the relationship with indigenous plant species richness. Ecoscience 12(3):391–402

    Article  Google Scholar 

  • Rickebusch S, Thuiller W, Hickler T, Araújo MB, Sykes MT, Schweiger O, Lafourcade B (2008) Incorporating the effects of changes in vegetation functioning and CO2 on water availability in plant habitat models. Biol Lett 4(5):556–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson MP, Villet MH, Fairbanks DHK, Henderson L, Higgins SI, Hoffmann JH, Le Maitre DC, Palmer AR, Riggs I, Shackleton CM, Zimmermann HG (2003) A proposed prioritization system for the management of invasive alien plants in South Africa. S Afr J Sci 99:37–43

    Google Scholar 

  • Rödder D, Schmidtlein S, Veith M, Lötters S (2009) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied? PLoS ONE 4(11):e7843

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouget M, Richardson DM (2003) Inferring Process from Pattern in Plant Invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162(6):713–724

    Article  PubMed  Google Scholar 

  • Rouget M, Richardson DM, Nel JL, van Wilgen BW (2002) Commercially important trees as invasive aliens – towards spatially explicit risk assessment at a national scale. Biol Invasions 4(1):397–412

    Article  Google Scholar 

  • Rouget M, Richardson DM, Nel JL, Le Maitre DC, Egoh B, Mgidi T (2004) Mapping the potential ranges of major plant invaders in South Africa, Lesotho and Swaziland using climatic suitability. Divers Distrib 10(5–6):475–484

    Article  Google Scholar 

  • Roura-Pascual N, Suarez AV, Gómez C, Pons P, Touyama Y, Wild AL, Peterson AT (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proc R Soc B 271(1557):2527–2535

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutherford MC, Westfall RH (1986) The Biomes of Southern Africa - an objective categorization. Mem Bot Surv S Afr 54:1–98

    Google Scholar 

  • Schulze RD (2008) South African atlas of climatology and agrohydrology. Water Research Commission, Pretoria, RSA, WRC Report 1489/1/08, Section 18.3

  • Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31(10):1555–1568

    Article  Google Scholar 

  • Senan AS, Tomasetto F, Farcomeni A, Somashekar RK, Attorre F (2012) Determinants of plant species invasions in an arid island: evidence from Socotra Island (Yemen). Plant Ecol 213(9):1381–1392

    Article  Google Scholar 

  • Sharma GP, Singh JS, Raghubanshi AS (2005) Plant invasions: emerging trends and future implications. Curr Sci 88(5):726–734

    Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science 334(6053):230–232

    Article  CAS  PubMed  Google Scholar 

  • Theoharides K, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stage of invasion. N Phytol 176(2):256–273

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2003) Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. J Veg Sci 14(5):669–680

    Article  Google Scholar 

  • Thuiller W, Araùjo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31(3):353–361

    Article  Google Scholar 

  • Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Thuiller W, Richardson DM, Rouget M, Procheş S, Wilson JRU (2006) Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87(7):1755–1769

    Article  PubMed  Google Scholar 

  • Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien plant invasions? Biol Invasions 193:197–211

    Article  Google Scholar 

  • Turpie J (2004) The role of resource economics in the control of invasive alien plants in South Africa. S Afr J Sci 100:87–93

    Google Scholar 

  • van Wilgen BW (2009) The evolution of fire and invasive alien plant management practices in fynbos. S Afr J Sci 105:335–342

    Google Scholar 

  • van Wilgen BW, Richardson DM, Le Maitre DC, Marais C, Magadlela D (2001) The economic consequences of alien plant invasion: examples of impacts and approaches to sustainable management in South Africa. Environ Dev Sustain 3:145–168

    Article  Google Scholar 

  • van Wilgen BW, Nel JL, Rouget M (2007) Invasive alien plants and South African rivers: a proposed approach to the prioritization of control operations. Freshw Biol 52(4):711–723

    Article  Google Scholar 

  • van Wilgen BW, Forsyth GG, Le Maitre DC, Wannenburgh A, Kotzé JDF, van den Berg E, Henderson L (2012) An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. Biol Conserv 148(1):28–38

    Article  Google Scholar 

  • van Wilgen BW, Fill J, Baard J, Kraaij T (2016) Historical costs and projected future scenarios for the management of invasive alien plants in protected areas in the Floristic Region. Biol Conserv 200:168–177

    Article  Google Scholar 

  • Versfeld DB, Le Maitre DC, Chapman RA (1998) Alien invadering plants and water resources in South Africa: a preliminary assessment. WRC Report No. TT99/98. Water Research Commission, Pretoria

  • Wilson JRU, Richardson DM, Rouget M, Procheş S, Amis MA, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22

    Article  Google Scholar 

  • Working for Water Mapping Standards (2003) Standards for mapping and management of alien vegetation and operational data, Version 5. Department of Water Affairs and Forestry, Working for Water Programme, Cape Town

    Google Scholar 

Download references

Acknowledgements

This study was supported by SECOSUD II Project funded by the Italian Agency for Development Cooperation. We are also grateful to Laura Clarke for revising the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilva Terzano.

Additional information

Communicated by Peter Minchin.

Appendix

Appendix

See Tables 8, 9 and 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terzano, D., Kotzé, I., Marais, C. et al. Environmental and anthropogenic determinants of the spread of alien plant species: insights from South Africa’s quaternary catchments. Plant Ecol 219, 277–297 (2018). https://doi.org/10.1007/s11258-018-0795-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-018-0795-5

Keywords

Navigation