Skip to main content

Advertisement

Log in

Effects of grazing abandonment and climate change on mountain summits flora: a case study in the Tatra Mts

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Changes in the local flora of mountains are often explained by climate warming, but changes in grazing regimes may also be important. The aim of this study was to evaluate whether the alpine flora on summits in the Tatra Mts, Poland and Slovakia, has changed over the last 100 years, and if the observed changes are better explained by changes in sheep grazing or climate. We resurveyed the flora of 14 mountain summits initially investigated in the years 1878–1948. We used ordination methods to quantify changes in species composition. We tested whether changes in plant species composition could be explained by cessation of grazing and climate change, and whether these factors have influenced shifts in Ellenberg’s plant ecological indicator values and Raunkiaer’s life forms. Changes in alpine flora were greater on lower elevation summits, and lower on summits less accessible for sheep. More accessible summits were associated with a decrease in mean values of plant species’ light ecological indicator values over time, and a concurrent increase in temperature and nitrogen ecological indicator values. No significant relationships were found between accessibility for sheep and changes in Raunkiaer’s life-forms. Greater accessibility for sheep (meaning high historical grazing pressure) led to greater compositional changes of mountain summits compared with summits with low accessibility. Our results suggest that cessation of sheep grazing was the main factor causing changes in the species composition of resurveyed mountain summits in the Tatra Mts, while climate change played a more minor role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler P, Raff D, Lauenroth W (2001) The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128(4):465–479. https://doi.org/10.1007/s004420100737

    Article  CAS  PubMed  Google Scholar 

  • Amezaga I, Mendarte S, Albizu I, Besga G, Garbisu C, Onaindia M (2004) Grazing intensity aspect and slope effects on limestone grassland structure. J Range Manage 57(6):606–612

    Article  Google Scholar 

  • Ameztegui A, Coll L, Brotons L, Ninot JM (2015) Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Glob Ecol Biogeogr 25:263–273. https://doi.org/10.1111/geb.12407

    Article  Google Scholar 

  • Austrheim G, Eriksson O (2001) Plant species diversity and grazing in the Scandinavian mountains—patterns and processes at different spatial scales. Ecography 24(6):683–695. https://doi.org/10.1111/j.1600-0587.2001.tb00530.x

    Article  Google Scholar 

  • Austrheim G, Mysterud A, Pedersen B, Halvorsen R, Hassel K, Evju M (2008) Large scale experimental effects of three levels of sheep densities on an alpine ecosystem. Oikos 117:837–846. https://doi.org/10.1111/j.2008.0030-1299.16543.x

    Article  Google Scholar 

  • Baeten L, Hermy M, Van Daele S, Verheyen K (2010) Unexpected understorey community development after 30 years in ancient and post-agricultural forests. J Ecol 98:1447–1453. https://doi.org/10.1111/j.1365-2745.2010.01711.x

    Article  Google Scholar 

  • Başnou C, Pino J, Šmilauer P (2009) Effect of grazing on grasslands in the Western Romanian Carpathians depends on the bedrock type. Preslia 81(2):91–104

    Google Scholar 

  • Batllori E, Camarero JJ, Gutiérrez E (2010) Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes, irrespective of the past disturbance regime. J Biogeogr 37:1938–1950. https://doi.org/10.1111/j.1365-2699.2010.02348.x

    Google Scholar 

  • Baur B, Cremene C, Groza G, Rakosy L, Schileyko AA, Baur A, Stoll P, Erhardt A (2006) Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania (Romania). Biol Conserv 132:261–273. https://doi.org/10.1016/j.biocon.2006.04.018

    Article  Google Scholar 

  • Becker A, Körner C, Brun JJ, Guisan A, Tappeiner U (2007) Ecological and land use studies along elevational gradients. Mt Res Dev 27:58–65. https://doi.org/10.1659/0276-4741(2007)27[58:EALUSA]2.0.CO

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20(1):30–59. https://doi.org/10.1890/08-1140.1

    Article  CAS  PubMed  Google Scholar 

  • Britton AJ, Beale CM, Towers W, Hewison RL (2009) Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biol Conserv 142:1728–1739. https://doi.org/10.1016/j.biocon.2009.03.010

    Article  Google Scholar 

  • Burg S, Rixen C, Stöckli V, Wipf S (2015) Observation bias and its causes in botanical surveys on high-alpine summits. J Veg Sci 26:191–200. https://doi.org/10.1111/jvs.12211

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E (2007) Response of Pinus uncinata recruitment to climate warming and changes in grazing pressure in an isolated population of the Iberian system (NE Spain). Arct Antarct Alp Res 39(2):210–217

    Article  Google Scholar 

  • Campagnaro T, Frate L, Carranza ML, Sitzia T (2017) Multi-scale analysis of alpine landscapes with different intensities of abandonment reveals similar spatial pattern changes: implications for habitat conservation. Ecol Indic 74(19):147–159. https://doi.org/10.1016/j.ecolind.2016.11.017

    Article  Google Scholar 

  • Carbognani M, Tomaselli M, Petraglia A (2014) Current vegetation changes in an alpine late snowbed community in the south-eastern Alps (N-Italy). Alpine Bot 124:105–113. https://doi.org/10.1007/s00035-014-0135-x

    Article  Google Scholar 

  • Carpenter W, Goodenough A (2014) How robust are community-based plant bioindicators? Empirical testing of the relationship between Ellenberg values and direct environmental measures in woodland communities. Commun Ecol 15:1–11. https://doi.org/10.1556/ComEc.15.2014.1.1

    Article  Google Scholar 

  • Casas C, Ninot JM (2003) Correlation between species composition and soil properties in the pastures of Plana de Vic (Catalonia, Spain). Acta Bot Barc 49:291–310

    Google Scholar 

  • Chelli S, Wellstein C, Campetella G, Canullo R, Tonin R, Zerbe S, Gerdol R (2017) Climate change response of vegetation across climatic zones in Italy. Clim Res 71:249–262. https://doi.org/10.3354/cr01443

    Article  Google Scholar 

  • Chemini C, Rizzoli A (2003) Land use change and biodiversity conservation in the Alps. J Mt Ecol 7:1–7

    Google Scholar 

  • Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. https://doi.org/10.1126/science.1206432

    Article  CAS  PubMed  Google Scholar 

  • Chytrý M, Hejcman M, Hennekens SM, Schellberg J (2009) Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment Germany. Appl Veg Sci 12:167–176. https://doi.org/10.1111/j.1654-109x.2009.01011.x

    Article  Google Scholar 

  • Czortek P, Delimat A, Dyderski MK, Zięba A, Jagodziński AM, Jaroszewicz B (2017) Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr—a rare arctic-alpine species in the Tatra Mts. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.10.001

    PubMed  Google Scholar 

  • Drozdowski A, Groblewska S, Karkoszka W, Kolowca J, Korosadowicz Z, Nowak M, Podobiński L, Węglarska B (1961) Hodowla owiec i bydła w Tatrach Polskich i na Podhalu. In: Antosiewicz W (eds.) Pasterstwo Tatr Polskich i Podhala Tom III. Wydawnictwo Polskiej Akademii Nauk Wrocław–Kraków–Warszawa, pp. 82–99

  • Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417. https://doi.org/10.1046/j.1365-2699.2003.00839.x

    Article  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps (Austria). Arct Antarct Alp Res 354:434–441

    Article  Google Scholar 

  • Dupré C, Diekmann M (2001) Differences in species richness and life–history traits between grazed and abandoned grasslands in southern Sweden. Ecography 24:275–286. https://doi.org/10.1111/j.1600-0587.2001.tb00200.x

    Article  Google Scholar 

  • Durak T, Żywiec M, Kapusta P, Holeksa J (2015) Impact of land use and climate changes on expansion of woody species on subalpine meadows in the Eastern Carpathians. For Ecol Manag 339:127–135. https://doi.org/10.1016/j.foreco.2014.12.014

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–258

    Google Scholar 

  • Engler R, Randin CF, Thuiller W et al (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341. https://doi.org/10.1111/j.1365-2486.2010.02393.x

    Article  Google Scholar 

  • Erschbamer B, Unterluggauer P, Winkler E, Mallaun M (2011) Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83:387–401

    Google Scholar 

  • Euro + Med (2006–) Euro + Med Plant Base—the information resource for Euro-Mediterranean plant diversity. Published in the Internet https://ww2.bgbmorg/EuroPlusMed/ Accessed 23 Oct 2017

  • Evangelista A, Frate L, Carranza ML, Attorre F, Pelino G, Stanisci A (2016) Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years. AoB Plants 8:plw004. https://doi.org/10.1093/aobpla/plw004

    Article  PubMed  PubMed Central  Google Scholar 

  • Evju M, Austrheim G, Halvorsen R, Mysterud A (2009) Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem. Oecologia 161:77–85. https://doi.org/10.1007/s00442-009-1358-1

    Article  PubMed  Google Scholar 

  • Felde VA, Kapfer J, Grytnes J-A (2012) Upward shift in elevational plant species ranges in Sikkilsdalen (central Norway). Ecography 35:922–932. https://doi.org/10.1111/j.1600-0587.2011.07057.x

    Article  Google Scholar 

  • Figuła K, Lenkiewicz W, Marchlewski M, Nowak M, Śmiałkowska Z, Zwolińska Z (1960) Pastwiska podgórskie i górskie Tatr Polskich i Podhala. Teraźniejszość i przyszłość. In: Antoniewicz W (eds.) Pasterstwo Tatr Polskich i Podhala Tom II. Wydawnictwo Polskiej Akademii Nauk Wrocław–Kraków–Warszawa, pp. 82–116

  • Filibeck G, Adams J, Brunetti M, Di Filippo A, Rosati L, Scoppola A, Piovesan G (2015) Tree ring ecological signal is consistent with floristic composition and plant indicator values in Mediterranean Fagus sylvatica forests. J Ecol 103(6):1580–1593. https://doi.org/10.1111/1365-2745.12478

    Article  Google Scholar 

  • Frei E, Bodin J, Walther GR (2010) Plant species’ range shifts in mountainous areas—all uphill from here? Bot Helv 120:117–128. https://doi.org/10.1007/s00035-010-0076-y

    Article  Google Scholar 

  • Gąsienica-Byrcyn W (2009) Historia poznania występowanie i rozmieszczenie świstaka tatrzańskiego (Marmota m latirostris Kratochvíl 1961) w Tatrach. Chr Przyr Ojcz 65(2):99–110

    Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18(4):571–582. https://doi.org/10.1658/1100-9233(2007)18[571:TLSITS]2.0.CO;2

  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115. https://doi.org/10.1038/NCLIMATE1329

    Article  Google Scholar 

  • Grabherr G (1982) The impact of trampling by tourists on a high altitudinal grassland in the Tyrolean Alps Austria. Vegetation 48:209–219

    Google Scholar 

  • Grytnes J-A, Kapfer J, Jurasinski G, Birks HH, Henriksen H, Klanderud K, Odland A, Ohlson M, Wipf S, Birks HJB (2014) Identifying the driving factors behind observed elevational range shifts on European mountains. Glob Ecol Biogeogr 23:876–884. https://doi.org/10.1111/geb.12170

    Article  Google Scholar 

  • Hiller B, Nuebel A, Broll G, Holtmeier F-K (2005) Snowbeds on silicate rocks in the upper Engadine (Central Alps, Switzerland)—pedogenesis and interactions among soil, vegetation and snow cover. Arct Antarct Alp Res 37:465–476. https://doi.org/10.1657/1523-0430(2005)037[0465:SOSRIT]2.0.CO;2

  • Hole L, Engardt M (2008) Climate change impact on atmospheric nitrogen deposition in northwestern Europe: a model study. Ambio 37(1):9–17. https://doi.org/10.1579/0044-7447(2008)37[9:CCIOAN]2.0.CO;2

  • IPCC (2007) Climate change 2007 Synthesis Report https://www.ipccch/publications_and_data/publications_and_data_reportsshtml/ Accessed 23 Oct 2017

  • IPCC (2014) Climate change 2014 Synthesis Report https://www.ipccch/publications_and_data/publications_and_data_reportsshtml/ Accessed 23 Oct 2017

  • Jägerbrand AK, Alatalo JM (2015) Effects of human trampling on abundance and diversity of vascular plants bryophytes and lichens in alpine heath vegetation Northern Sweden. Springer Plus. https://doi.org/10.1186/s40064-015-0876-z

    PubMed  PubMed Central  Google Scholar 

  • Kaczka RJ, Lempa M, Czajka B, Janecka K, Rączkowska Z, Hreško J, Bugar G (2015) The recent timberline changes in the Tatra Mountains: a case study of the Mengusovská Valley (Slovakia) and the Rybi Potok Valley (Poland). Geogr Polon 88(2):71–83

    Article  Google Scholar 

  • Kapfer J, Hédl R, Jurasinski G, Kopecký M, Schei FH, Grytnes J-A (2017) Resurveying historical vegetation data—opportunities and challenges. Appl Veg Sci 20:164–171. https://doi.org/10.1111/avsc.12269/full

    Article  Google Scholar 

  • Kerr JT, Dobrowski SZ (2013) Predicting the impacts of global change on species communities and ecosystems: it takes time. Glob Ecol Biogeogr 22(3):261–263. https://doi.org/10.1111/geb.12036

    Article  Google Scholar 

  • Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 131:1–6. https://doi.org/10.1191/0959683603hl589ft

    Article  Google Scholar 

  • Kliment J, Šibík J, Šibíková I, Jarolímek I, Dúbravcová Z, Uhlířová J (2010) High–altitude vegetation of the Western Carpathians—a syntaxonomical review. Biologia 656:965–989. https://doi.org/10.2478/s11756-010-0109-4

    Google Scholar 

  • Kolowca J (1955) Pasterstwo w Tatrzańskim Parku Narodowym. In: Szafer W (ed) Tatrzański Park Narodowy. Polska Akademia Nauk Zakład Ochrony Przyrody, Wydawnictwa Popularnonaukowe, Kraków, pp 245–256

    Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Kotula B (1889) –1890 Rozmieszczenie roślin naczyniowych w Tatrach. Wydawnictwo Akademii Umiejętności, Kraków

    Google Scholar 

  • Krahulec F, Skálová H, Herben T, Hadincová V, Wildová R, Pechácková S (2001) Vegetation changes following sheep grazing in abandoned mountain meadows. Appl Veg Sci 4:97–102. https://doi.org/10.1111/j.1654-109X.2001.tb00239.x

    Article  Google Scholar 

  • Kucharzyk S, Augustyn M (2010) Trwałość polan reglowych w Bieszczadzkim Parku Narodowym. Roczniki Bieszczadzkie 18:45–58

    Google Scholar 

  • Lenoir J, Svenning JC (2013) Latitudinal and elevational range shifts under contemporary climate change. In: Levin S (ed) Encyclopedia of biodiversity, vol 4, 2nd edn. Elsevier, Oxford, pp 599–611

    Chapter  Google Scholar 

  • Lenoir J, Svenning JC (2015) Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38(1):15–28. https://doi.org/10.1111/ecog.00967

    Article  Google Scholar 

  • Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771. https://doi.org/10.1126/science.1156831

    Article  CAS  PubMed  Google Scholar 

  • Losvik M (1999) Plant species diversity in old traditionally managed hay meadow compared to abandoned hay meadows in southwest Norway. Nord J Bot 19:473–487. https://doi.org/10.1111/j.1756-1051.1999.tb01231.x

    Article  Google Scholar 

  • Matteodo M, Wipf S, Stöckli W, Rixen C, Vittoz P (2013) Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ Res Lett. https://doi.org/10.1088/1748-9326/8/2/024043

    Google Scholar 

  • Maycock PE, Guzik J, Janokvic J, Shevera M, Carleton TJ (2000) Composition structure and ecological aspects of mesic old growth Carpathian deciduous forests of Slovakia (Southern Poland and the Western Ukraine). Fragm Flor Geobot 45(1–2):281–321

    Google Scholar 

  • Michelsen O, Syverhuset AO, Pedersen B, Holten JI (2011) The impact of climate change on recent vegetation changes on Dovrefjell (Norway). Diversity 3:91–111. https://doi.org/10.3390/d3010091

    Article  Google Scholar 

  • Mirek Z (1996) Idea Tatrzańskiego Parku Narodowego—ochrona i udostępnianie. In: Mirek Z (ed) Przyroda Tatrzańskiego Parku Narodowego. Wydawnictwa Tatrzańskiego Parku Narodowego, Kraków-Zakopane, pp 27–35

    Google Scholar 

  • Motta R (1996) Impact of wild ungulates on forest regeneration and tree composition of mountain forests in the Western Italian Alps. For Ecol Manag 88(1–2):93–98. https://doi.org/10.1016/S0378-1127(96)03814-5

    Article  Google Scholar 

  • Naaf T, Wulf M (2010) Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biol Conserv 143:848–855. https://doi.org/10.1016/j.biocon.2009.12.027

    Article  Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605. https://doi.org/10.1111/j.1469-185X.2007.00027.x

    Article  PubMed  Google Scholar 

  • Olden JD, Le Roy PN, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. https://doi.org/10.1016/j.tree.2003.09.010

    Article  PubMed  Google Scholar 

  • Onipchenko VG, Blinnikov MS, Gerasimova MA, Volkova EV, Cornelissen JHC (2009) Experimental comparison of competition and facilitation in alpine communities varying in productivity. J Veg Sci 20(4):718–727. https://doi.org/10.1111/j.1654-1103.2009.01075.x

    Article  Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107. https://doi.org/10.1016/j.baae.2007.01.005

    Article  Google Scholar 

  • Paryski WH (1959) Szlaki Pasterskie w Tatrach i na Podtatrzu. In: Antoniewicz W (ed) Pasterstwo Tatr Polskich i Podhala Tom I. Wydawnictwo Polskiej Akademii Nauk Wrocław–Kraków–Warszawa, pp 147–160

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel Tyrol Austria. Glob Change Biol 13:147–156. https://doi.org/10.1111/j.1365-2486.2006.01282.x

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Benito Alonso JL, Coldea G et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355. https://doi.org/10.1126/science.1219033

    Article  CAS  PubMed  Google Scholar 

  • Pavlů V, Hejcman M, Pavlů L, Gaisler J, Nežerková P, Guerovich Andaluz M (2005) Vegetation changes after cessation of grazing management in the Jizerské Mountains (Czech Republic). Ann Bot Fen 42:343–349

    Google Scholar 

  • Pavlů V, Hejcman M, Pavlů L, Gaisler J (2007) Restoration of grazing management and its effect on vegetation in an upland grassland. Appl Veg Sci 10:375–382. https://doi.org/10.1111/j.1654-109X.2007.tb00436.x

    Article  Google Scholar 

  • Pawłowski B (1956) Flora Tatr Tom I. Państwowe Wydawnictwo Naukowe, Warszawa

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing R Foundation for Statistical Computing Vienna

  • Radwańska-Paryska Z, Paryski WH (1995) Wielka encyklopedia tatrzańska. Wydawnictwa Górskie, Poronin

    Google Scholar 

  • Raunkiaer C (1905) Types biologiques pour la geographie botanique. Overs. Kongel. Danske Vidensk. Selsk. Forh. Medlemmers Arbeider 5:347–437

    Google Scholar 

  • Renetzeder C, Knoflacher M, Loibl W, Wrbka T (2010) Are habitats of Austrian agricultural landscapes sensitive to climate change? Landsc Urban Plan 98(3–4):150–159. https://doi.org/10.1016/j.landurbplan.2010.08.022

    Article  Google Scholar 

  • Ross LC, Woodin SJ, Hester AJ, Thompson DBA, Birks HJB (2012) Biotic homogenization of upland vegetation: patterns and drivers at multiple spatial scales over five decades. J Veg Sci 23:755–770. https://doi.org/10.1111/j.1654-1103.2012.01390.x

    Article  Google Scholar 

  • Sagorski E, Schneider G (1891) Flora der Centralkarpathen. Verlag von Eduard Kummer, Leipzig

    Google Scholar 

  • Sandvik SM, Odland A (2014) Changes in alpine snowbed-wetland vegetation over three decades in northern Norway. Nord J Bot 32:377–384. https://doi.org/10.1111/j.1756-1051.2013.00249.x

    Article  Google Scholar 

  • Scherrer P, Pickering CM (2006) Recovery of alpine herbfield on a closed walking track in the Kosciuszko Alpine Zone Australia. Arct Antarct Alp Res 38(2):239–248

    Article  Google Scholar 

  • Sheil D (2016) Disturbance and distributions: avoiding exclusion in a warming world. Ecol Soc 2:10. https://doi.org/10.5751/ES-07920-210110

    Article  Google Scholar 

  • Sitzia T, Semenzato P, Trentanovi G (2010) Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: a global overview. For Ecol Manag 259:1354–1362. https://doi.org/10.1016/j.foreco.2010.01.048

    Article  Google Scholar 

  • Siwicki M, Paryski WH, Gogoc A, Cukierski M, Czajka W, Scheiki-Bińkowska M, Podoba K, Krzywańska E (2002–2003) Tatry Zachodnie słowackie i polskie Mapa turystyczna 1: 25,000 Wydawnictwo Kartograficzne POLKART, Warszawa–Zielona Góra–Zakopane

  • Siwicki M, Paryski WH, Gogoc A, Cukierski M, Czajka W, Scheiki-Bińkowska M, Podoba K, Krzywańska E, (2003–2004) Tatry Wysokie słowackie i polskie Mapa turystyczna 1: 25,000. Wydawnictwo Kartograficzne POLKART, Warszawa–Zielona Góra–Zakopane

  • Smart SM, Scott WA (2009) Bias in Ellenberg indicator values—problems with detection of the effect of vegetation type. J Veg Sci 15(6):843–846. https://doi.org/10.1111/j.1654-1103.2004.tb02327.x

    Google Scholar 

  • Speed JDM, Austrheim G, Hester AJ, Mysterud A (2012) Elevational advance of alpine plant communities is buffered by herbivory. J Veg Sci 23:617–625. https://doi.org/10.2307/23251339

    Article  Google Scholar 

  • Stanisci A, Frate L, Morra Di Cella U, Pelino G, Petey M, Siniscalco C, Carranza ML (2016) Short term signals of climate change in Italian summit vegetation: observations at two GLORIA sites. Plant Biosyst 150(2):227–235. https://doi.org/10.1080/11263504.2014.968232

    Article  Google Scholar 

  • Steel EA, Kennedy MC, Cunningham PG, Stanovick JS (2013) Applied statistics in ecology: common pitfalls and simple solutions. Ecosphere 4(9):115. https://doi.org/10.1890/es13-00160.1

    Article  Google Scholar 

  • Stöckli V, Wipf S, Nilsson C, Rixen C (2011) Using historical plant surveys to track biodiversity on mountain summits. Plant Ecol Div 4(4):415–425. https://doi.org/10.1080/17550874.2011.651504

    Article  Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Vassilev K, Pedashenko H, Nikolov SC, Apostolova I, Dengler J (2011) Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts (Bulgaria). Plant Biosyst 145(3):654–665. https://doi.org/10.1080/11263504.2011.601337

    Article  Google Scholar 

  • Vittoz P, Bodin J, Ungricht S, Burga CA, Walther GR (2008) One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J Veg Sci 19:671–680. https://doi.org/10.3170/2008-8-18434

    Article  Google Scholar 

  • Wesołowska M (2009) Zmiany roślinności łąkowej Tatr Zachodnich i ich przedpola w ciągu ostatniego półwiecza. In: Guzik M (ed) Długookresowe zmiany w przyrodzie i użytkowaniu TPN. Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane, pp 91–104

    Google Scholar 

  • Winkler M, Lamprecht A, Steinbauer K, Hüber K, Theurillat JP, Breiner F, Choler P et al (2016) The rich sides of mountain summits—a pan-European view on aspect preferences of alpine plants. J Biogeogr 43(11):2261–2273. https://doi.org/10.1111/jbi.12835

    Article  Google Scholar 

  • Witkowska-Żuk L, Ciurzycki W (2000) Sukcesja roślinności na terenach wyłączonych z wypasu owiec w Tatrzańskim Parku Narodowym w latach 1965–1994. Ochrona Przyrody 57:19–40

    Google Scholar 

  • Wojterska M, Wojterski T (2007) Zróżnicowanie zbiorowisk ziołorośli i traworośli w Dolinie Roztoki w Tatrach Wysokich. In: Kępczyńska E, Kępczyński J (ed) Botanika w Polsce - sukcesy problemy perspektywy. Streszczenia referatów i plakatów 54 Zjazd PTB, Szczecin, p 109

  • Zarzycki K, Trzcińska-Tacik H, Różanski W, Szeląg Z, Wołek J, Korzeniak U (2002) Ecological indicator values of vascular plants of Poland. W Szafer Institute of Botany, Polish Academy of Sciences, Kraków

    Google Scholar 

  • Zelený D, Schaffers AP (2012) Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J Veg Sci 23(3):419–431. https://doi.org/10.1111/j.1654-1103.2011.01366.x

    Article  Google Scholar 

  • Zięba F, Zwijacz Kozica T (2004) Capy kozy i koźlęta czyli prawie wszystko o kozicach. Tatrzański Park Narodowy, Zakopane

    Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the Polish–Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of project KlimaVeg, Contract No. Pol-Nor/196,829/87/2013. We are very grateful to employees of the Tatra National Park for their great help in our field work: mgr inż. Blažena Sedláková and dr inż. Tomasz Zwijacz-Kozica. We are grateful to the four anonymous reviewers for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patryk Czortek.

Additional information

Communicated by Philip Fay.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czortek, P., Eycott, A.E., Grytnes, JA. et al. Effects of grazing abandonment and climate change on mountain summits flora: a case study in the Tatra Mts. Plant Ecol 219, 261–276 (2018). https://doi.org/10.1007/s11258-018-0794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-018-0794-6

Keywords

Navigation