Skip to main content
Log in

Plant-disperser mutualisms in a semi-arid habitat invaded by Lantana camara L.

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Dispersal is an important ecological process that affects plant population structure and community composition. Invasive plants with fleshy fruits rapidly form associations with native and invasive dispersers, and may affect existing native plant-disperser associations. We asked whether frugivore visitation rate and fruit removal was associated with plant characteristics in a community of fleshy-fruited plants and whether an invasive plant receives more visitation and greater fruit removal than native plants in a semi-arid habitat of Andhra Pradesh, India. Tree-watches were undertaken at individuals of nine native and one invasive shrub species to assess the identity, number and fruit removal by avian frugivores. Network analyses and generalised linear mixed-effects models were used to understand species and community-level patterns. All plants received most number of visits from abundant, generalist avian frugivores. Number of frugivore visits and time spent by frugivores at individual plants was positively associated with fruit crop size, while fruit removal was positively associated with number of frugivore visits and their mean foraging time at individual plants. The invasive shrub, Lantana camara L. (Lantana), had lower average frugivore visit rate than the community of fleshy-fruited plants and received similar average frugivore visits but greater average per-hour fruit removal than two other concurrently fruiting native species. Based on the results of our study, we infer that there is little evidence of competition between native plants and Lantana for the dispersal services of native frugivores and that more data are required to assess the nature of these interactions over the long term. We speculate that plant associations with generalist frugivores may increase the functional redundancy of this frugivory network, buffering it against loss of participating species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aravind NA, Rao D, Ganeshaiah KN, Uma Shaanker R, Poulsen JG (2010) Impact of the invasive plant, Lantana camara, on bird assemblages at Male Mahadeshwara Reserve Forest, South India. Trop Ecol 51:325–338

    Google Scholar 

  • Babu S, Love A, Babu CR (2009) Ecological restoration of Lantana-invaded landscapes in Corbett Tiger Reserve, India. Ecol Rest 27:467–477. doi:10.3368/er.27.4.467

    Article  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant–Animal Mutualistic Networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433. doi:10.1126/science.1123412

    Article  CAS  PubMed  Google Scholar 

  • Bello C, Galetti M, Montan D, Pizo MA, Mariguela TC, Culot L, Bufalo F, Labecca F, Pedrosa F, Constantini R, Emer C, Silva WR, da Silva FR, Ovaskainen O, Jordano P (2017) Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic Forest. Ecology 98:1729. doi:10.1002/ecy.1818

    Article  PubMed  Google Scholar 

  • Bhagwat SA, Breman E, Thekaekara T, Thornton TF, Willis KJ (2012) A battle lost? Report on two centuries of invasion and management of Lantana camara L. in Australia, India and South Africa. PLoS ONE 7:e32407. doi:10.1371/journal.pone.0032407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blendinger PG, Villegas M (2011) Crop size is more important than neighborhood fruit availability for fruit removal of Eugenia uniflora (Myrtaceae) by bird seed dispersers. Plant Ecol 212:889–899. doi:10.1007/s11258-010-9873-z

    Article  Google Scholar 

  • Blendinger PG, Loiselle BA, Blake JG (2008) Crop size, plant aggregation, and microhabitat type affect fruit removal by birds from individual melastome plants in the Upper Amazon. Oecologia 158:273–283. doi:10.1007/s00442-008-1146-3

    Article  PubMed  Google Scholar 

  • Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34. doi:10.1111/j.1365-2745.2007.01295.x

    Article  Google Scholar 

  • Buckley YM, Anderson S, Catterall CP, Corlett RT, Engel T, Gosper CR, Nathan R, Richardson DM, Setter M, Spiegel O, Vivian-Smith G, Voigt FA, Weir JES, Westcott DA (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43:848–857. doi:10.1111/j.1365-2664.2006.01210.x

    Article  Google Scholar 

  • Burns KC (2013) What causes size coupling in fruit–frugivore interaction webs? Ecology 94:295–300. doi:10.1890/12-1161.1

    Article  CAS  PubMed  Google Scholar 

  • Carlo TA (2005) Interspecific neighbors change seed dispersal pattern of an avian-dispersed plant. Ecology 86:2440–2449

    Article  Google Scholar 

  • Carlo TA, Morales JM (2008) Inequalities in fruit-removal and seed dispersal: consequences of bird behaviour, neighbourhood density and landscape aggregation. J Ecol 96:609–618. doi:10.1111/j.1365-2745.2008.01379.x

    Article  Google Scholar 

  • Carlo TA, Morales JM (2016) Generalist birds promote tropical forest regeneration and increase plant diversity via rare-biased seed dispersal. Ecology 97:1819–1831. doi:10.1890/15-2147.1

    Article  PubMed  Google Scholar 

  • Chimera CG, Drake DR (2010) Patterns of seed dispersal and dispersal failure in a Hawaiian dry forest having only introduced birds. Biotropica 42:493–502

    Article  Google Scholar 

  • Corlett RT (2017) Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update. Glob Ecol Conserv 11:1–22. doi:10.1016/j.gecco.2017.04.007

    Article  Google Scholar 

  • Fuentes M (1995) How specialized are fruit–bird interactions? Overlap of frugivore assemblages within and between plant species. Oikos 74:324–330. doi:10.2307/3545663

    Article  Google Scholar 

  • Gautier-Hion A, Duplantier J-M, Quris R, Feer F, Sourd C, Decoux J-P, Dubost G, Emmons L, Erard C, Hecketsweiler P, Moungazi A, Roussilhon C, Thiollay J-M (1985) Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65:324–337. doi:10.1007/BF00378906

    Article  CAS  PubMed  Google Scholar 

  • Gosper CR, Vivian-Smith G (2006) Selecting replacements for invasive plants to support frugivores in highly modified sites: a case study focusing on Lantana camara. Ecol Manag Restor 7:197–203

    Article  Google Scholar 

  • Gosper CR, Vivian-Smith G (2009) Fruit traits of vertebrate-dispersed alien plants: smaller seeds and more pulp sugar than indigenous species. Biol Invasions 12:2153–2163. doi:10.1007/s10530-009-9617-y

    Article  Google Scholar 

  • Heleno RH, Olesen JM, Nogales M, Vargas P, Traveset A (2013a) Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proc Biol Sci 280:20122112. doi:10.1098/rspb.2012.2112

    Article  PubMed  PubMed Central  Google Scholar 

  • Heleno RH, Ramos JA, Memmott J (2013b) Integration of exotic seeds into an Azorean seed dispersal network. Biol Invasions 15:1143–1154. doi:10.1007/s10530-012-0357-z

    Article  Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13(1):201–228

    Article  Google Scholar 

  • Jordano P (1987) Avian fruit removal: effects of fruit variation, crop size, and insect damage. Ecology 68:1711–1723. doi:10.2307/1939863

    Article  Google Scholar 

  • Kueffer C, Kronauer L, Edwards PJ (2009) Wider spectrum of fruit traits in invasive than native floras may increase the vulnerability of oceanic islands to plant invasions. Oikos 118:1327–1334. doi:10.1111/j.1600-0706.2009.17185.x

    Article  CAS  Google Scholar 

  • Levey DJ, del Rio CM (2001) It takes guts (and more) to eat fruit: lessons from avian nutritional ecology. Auk 118:819–831. doi:10.2307/4089834

    Article  Google Scholar 

  • Levey DJ, Bolker BM, Tewksbury JJ, Sargent S, Haddad NM (2005) Effects of landscape corridors on seed dispersal by birds. Science 309:146–148. doi:10.1126/science.1111479

    Article  CAS  PubMed  Google Scholar 

  • Levine JM, Murrell DJ (2003) The community-level consequences of seed dispersal patterns. Annu Rev Ecol Evol Syst 34:549–574

    Article  Google Scholar 

  • Li N, Fang S, Li X, An S, Lu C (2015) Differential contribution of frugivorous birds to dispersal patterns of the endangered Chinese yew (Taxus chinensis). Sci Rep 5:10045. doi:10.1038/srep10045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokotjomela TM, Musil CF, Esler KJ (2012) Do frugivorous birds concentrate their foraging activities on those alien plants with the most abundant and nutritious fruits in the South African Mediterranean-climate region? Plant Ecol 214:49–59. doi:10.1007/s11258-012-0145-y

    Article  Google Scholar 

  • Mokotjomela TM, Musil CF, Esler KJ (2013) Frugivorous birds visit fruits of emerging alien shrub species more frequently than those of native shrub species in the South African Mediterranean climate region. S Afr J Bot 86:73–78. doi:10.1016/j.sajb.2013.02.004

    Article  Google Scholar 

  • Morales JM, Carlo TA (2006) The effects of plant distribution and frugivore density on the scale and shape of dispersal kernels. Ecology 87:1489–1496

    Article  PubMed  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol (Amst) 15:278–285

    Article  CAS  Google Scholar 

  • Palacio RD, Valderrama-Ardila C, Kattan GH (2016) Generalist species have a central role in a highly diverse plant–frugivore network. Biotropica 48:349–355. doi:10.1111/btp.12290

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2005) Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change. Biol Cons 123:389–401. doi:10.1016/j.biocon.2004.12.006

    Article  Google Scholar 

  • Pugnaire FI, Luque MT (2001) Changes in plant interactions along a gradient of environmental stress. Oikos 93:42–49. doi:10.1034/j.1600-0706.2001.930104.x

    Article  Google Scholar 

  • R Development Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

  • Ramaswami G, Kaushik M, Prasad S, Sukumar R, Westcott D (2016) Dispersal by generalist frugivores affects management of an invasive plant. Biotropica 48:638–644. doi:10.1111/btp.12343

    Article  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev Camb Philos Soc 75:65–93

    Article  CAS  PubMed  Google Scholar 

  • Saracco JF, Collazo JA, Groom MJ, Carlo TA (2005) Crop size and fruit neighborhood effects on bird visitation to fruiting Schefflera morototoni trees in Puerto Rico1. Biotropica 37:81–87. doi:10.1111/j.1744-7429.2005.04040.x

    Article  Google Scholar 

  • Sargent S (1990) Neighborhood effects on fruit removal by birds: a field experiment with Viburnum dentatum (Caprifoliaceae). Ecology 71:1289–1298. doi:10.2307/1938266

    Article  Google Scholar 

  • Schaefer HM, Schmidt V, Winkler H (2003) Testing the defence trade-off hypothesis: how contents of nutrients and secondary compounds affect fruit removal. Oikos 102:318–328. doi:10.1034/j.1600-0706.2003.11796.x

    Article  Google Scholar 

  • Schupp EW (1993) Quantity, quality and the effectiveness of seed dispersal by animals. In: Fleming TH, Estrada A (eds) Frugivory and seed dispersal: ecological and evolutionary aspects. Springer, The Netherlands, pp 15–29

    Chapter  Google Scholar 

  • Sharma GP, Raghubanshi AS, Singh JS (2005) Lantana invasion: an overview. Weed Biol Manag 5:157–165

    Article  Google Scholar 

  • Smith AD, McWilliams SR (2014) Fruit removal rate depends on neighborhood fruit density, frugivore abundance, and spatial context. Oecologia 174:931–942. doi:10.1007/s00442-013-2834-1

    Article  PubMed  Google Scholar 

  • Traveset A (1998) Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspect Plant Ecol Evol Syst 1:151–190. doi:10.1078/1433-8319-00057

    Article  Google Scholar 

  • Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  • Traveset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 45:89–113. doi:10.1146/annurev-ecolsys-120213-091857

    Article  Google Scholar 

  • Traveset A, Riera N, Mas RE (2001) Passage through bird guts causes interspecific differences in seed germination characteristics. Funct Ecol 15:669–675

    Article  Google Scholar 

  • Wenny DG (2001) Advantages of seed dispersal: a re-evaluation of directed dispersal. Evol Ecol Res 3:37–50

    Google Scholar 

  • Wenny DG, Sekercioglu ÇH, Cordeiro NJ, Rogers HS, Kelly D (eds) (2016) Seed dispersal by fruit-eating birds Why birds matter: Avian ecological function and ecosystem services. University of Chicago Press, Chicago

    Google Scholar 

  • Wheelwright NT, Janson CH (1985) Colors of fruit displays of bird-dispersed plants in two tropical forests. Am Nat 126(6):777–799

Download references

Acknowledgements

We would like to thank the Department of Science and Technology—Science and Engineering Research Board, Govt. of India for funding this study. We are grateful to the staff at Rishi Valley School and at the Institute of Bird Studies, Rishi Valley School, for allowing us to conduct observations in the bird preserve and for providing us with the logistic support for the duration of this study. Baseline shrub and bird density data for the bird preserve were collected by Subhashini Krishnan and Srisathya M. We thank Dr. Soumya Prasad for the initial discussions that resulted in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetha Ramaswami.

Additional information

Communicated by William E. Rogers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaswami, G., Somnath, P. & Quader, S. Plant-disperser mutualisms in a semi-arid habitat invaded by Lantana camara L.. Plant Ecol 218, 935–946 (2017). https://doi.org/10.1007/s11258-017-0741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0741-y

Keywords

Navigation