Skip to main content

Edaphically distinct habitats shape the crown architecture of Lychnophora ericoides Mart. (Asteraceae) on tropical mountaintops

Abstract

Different architectural arrangements may represent contrasting morphological solutions to different environmental pressures. This work aims to elucidate whether the crown architecture of Lychnophora ericoides (Asteraceae) modifies in response to harsh soil conditions (nutrient poor and heavy metal rich) and how its crown architecture affects its reproduction. One hundred and sixty L. ericoides individuals were randomly sampled from eight populations, four on quartzite and four on iron canga rocky complexes in the Iron Quadrangle, southeastern Brazil. We performed soil analyses to characterize edaphic differences and used eight morphometric parameters to describe the crown architecture of the plants. We calculated the population density and reproductive potential to verify the relationship between habitat, architecture, and fitness. Canga soils were more nutrient rich than quartzite soils and plants were architecturally distinct in each habitat. Plants established on canga soils were shorter, had a thinner main branch, and a smaller leaf than those established on quartzite soils. Moreover, plants on canga soils had a larger crown diameter and a greater number of branches and inflorescences. There was no difference in population density but the reproductive potential varied among populations and habitats. The crown architecture of L. ericoides closely relates to reproductive potential and may favor the reproduction of more architectonically complex plants, regardless of habitat.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Almeida FFM (1977) O Cráton do São Francisco. Rev Bras Geociências 7:349–364

    Google Scholar 

  2. Alvares CA, Stape JL, Sentelhas PC, Goncalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. doi:10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  3. Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  4. Arya SK, Roy BK (2011) Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). J Environ Biol 32:707–711

    CAS  PubMed  Google Scholar 

  5. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407. doi:10.1093/aob/mcl260

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51:945–953. doi:10.1093/jexbot/51.346.945

    CAS  PubMed  Google Scholar 

  7. Bothe H (2011) Plants in heavy metal soils. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Berlin, pp 35–57

    Chapter  Google Scholar 

  8. Brazil (2008) Instrução normativa Ministério do Meio Ambiente Nº 6, de 23 de setembro. Dispõe sobre a lista de espécies da flora brasileira ameaçada de extinção. http://www.mma.gov.br/estruturas/179/_arquivos/179_05122008033615.pdf. Accessed 19 May 2015

  9. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. doi:10.1155/2014/752708

    Article  Google Scholar 

  10. Collevatti RG, Rabelo SG, Vieira RF (2009) Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann Bot 104:655–664. doi:10.1093/aob/mcp157

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cox MS, Bell PF, Kovar JL (1996) Differential tolerance of canola to arsenic when grown hydroponically or in soil. J Plant Nutr 19:1599–1610. doi:10.1080/01904169609365224

    CAS  Article  Google Scholar 

  12. Crawley MJ (1997) Life history and environment. In: Crawley MJ (ed) Plant ecology, 2nd edn. Blackwell Science, Oxford, pp 73–131

    Google Scholar 

  13. deDorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J Plant Nutr 28:1–20. doi:10.1081/PLN-200042144

    CAS  Article  Google Scholar 

  14. Dupuy L, Fourcaud T, Stokes A (2005) A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278:119–134. doi:10.1007/s11104-005-7577-2

    CAS  Article  Google Scholar 

  15. EMBRAPA (1997) Manual de métodos de análises de solo, 2nd edn. EMBRAPA, Rio de Janeiro

    Google Scholar 

  16. Eränen JK, Nilsen J, Yverev VE, Kozlov MV (2009) Mountain birch under multiple stressors—heavy metal resistant populations co-resistant to biotic stress but maladapted to abiotic stress. J Evol Biol 22:840–851. doi:10.1111/j.1420-9101.2009.01684.x

    Article  PubMed  Google Scholar 

  17. Farnsworth KD, Niklas KJ (1995) Theories of optimization, form and function in branching architecture in plants. Funct Ecol 9:355–363. doi:10.2307/2389997

    Article  Google Scholar 

  18. Ghani A (2010) Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.). Iran J Toxicol 3:325–334

    Google Scholar 

  19. Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region, eastern Brazil. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centers of plant diversity: a guide and strategy for their conservation. The Americas, Cambridge, pp 397–404

    Google Scholar 

  20. Housman DC, Price MV, Redak RA (2002) Architecture of coastal and desert Encelia farinosa (Asteraceae): consequences of plastic and heritable variation in leaf characters. Am J Bot 89:1303–1310. doi:10.3732/ajb.89.8.1303

    Article  PubMed  Google Scholar 

  21. Hussain A, Abbas N, Arshad F, Akram M, Khan Z, Ahmad K, Mansha M, Mirzaei F (2013) Effects of diverse doses of Lead (Pb) on different growth attributes of Zea mays L. Agricultural Sciences 4:262–265. doi:10.4236/as.2013.45037

    CAS  Article  Google Scholar 

  22. Jacobi CM, Carmo FF (2012) Diversidade florística nas cangas do Quadrilátero Ferrífero. Código Editora, Belo Horizonte

    Google Scholar 

  23. Jiang W, Liu D, Hou W (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic. Bioresour Technol 76:9–13. doi:10.1016/S0960-8524(00)00086-9

    CAS  Article  PubMed  Google Scholar 

  24. Kruckeberg AR (2002) Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press, Seatle

    Google Scholar 

  25. Larcher W (1994) Ökophysiologie der pflanzen. Eugen Ulmer, Stuttgart

    Google Scholar 

  26. Mansanares ME, Forni-Martins ER, Semir J (2002) Chromosome numbers in the genus Lychnophora Mart. (Lychnophorinae, Vernonieae, Asteraceae). Caryologia 55:367–374. doi:10.1080/00087114.2002.10797889

    Article  Google Scholar 

  27. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    CAS  Article  PubMed  Google Scholar 

  28. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. doi:10.1007/s10311-010-0297-8

    CAS  Article  Google Scholar 

  29. Nessim R (2008) Influência das condições edáficas sobre a arquitetura aérea de Lychnophora salicifolia Mart. Dissertation, Universidade Federal de Minas Gerais

  30. Niklas KJ (1986) Evolution of plant shape: design constraints. Trends Ecol Evol 1:67–72. doi:10.1016/0169-5347(86)90020-0

    CAS  Article  PubMed  Google Scholar 

  31. O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison SP, Rajakaruna N (eds) Serpentine: evolution and ecology in a model system. University of California Press, Berkeley, pp 97–137

    Google Scholar 

  32. Panda SK, Patra HK (2000) Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proc Natl Aced Sci India B 70:75–80

    CAS  Google Scholar 

  33. Rajakaruna N (2004) The edaphic factor in the origin of species. Int Geol Rev 46:471–478. doi:10.2747/0020-6814.46.5.471

    Article  Google Scholar 

  34. Rajakaruna N, Boyd RS (2008) The edaphic factor. In: Jorgensen SE, Fath B (eds) The encyclopedia of ecology, 2nd edn. Elsevier, Oxford, pp 1201–1207

    Chapter  Google Scholar 

  35. Rajakaruna N, Whitton J (2004) Trends in the evolution of edaphic specialists with an example of parallel evolution in the Lasthenia californica complex. In: Cronk QCB, Whitton J, Ree R, Taylor IEP (eds) Plant adaptation: Molecular Biology and Ecology. NRC Research Press, Ottowa, pp 103–110

    Google Scholar 

  36. Rapini A, Ribeiro PL, Pirani JB (2008) A flora dos campos rupestres da Cadeia do Espinhaço. Megadiversidade 4:16–24

    Google Scholar 

  37. Raven PH, Evert RR, Eichhorn SE (2007) Biologia vegetal. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  38. Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851. doi:10.1093/embo-reports/kvf177

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Ribeiro SP, Londe V, Bueno AP et al (2016) Plant defense against leaf herbivory based on metal accumulation: examples from a tropical high altitude ecosystem. Plant Species Biol. doi:10.1111/1442-1984.12136

    Google Scholar 

  40. Schulze ED, Beck E, Mèuller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  41. Semir J, Rezende AR, Monge M, Lopes NP (2011) As arnicas endêmicas das serras do Brasil: uma visão sobre a biologia e a química das espécies de Lychnophora (Asteraceae). Editora UFOP, Ouro Preto

    Google Scholar 

  42. Sharma DC, Sharma CP (1993) Chromium uptake and its effects on growth and biological yield of wheat. Cereal Res Commun 21:317–322. http://www.jstor.org/stable/23783985

  43. Shekar CHC, Sammaiah D, Shasthree T, Reddy KJ (2011) Effect of mercury on tomato growth and yield attributes. Int J Pharma BioSci 2:358–364

    CAS  Google Scholar 

  44. Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349. doi:10.1007/s11104-005-8815-3

    CAS  Article  Google Scholar 

  45. Shenker M, Plessner OE, Tel-Or E (2004) Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J Plant Physiol 161:197–202. doi:10.1078/0176-1617-00931

    CAS  Article  PubMed  Google Scholar 

  46. Silva DB, Turatti ICC, Gouveia DR, Ernst M, Teixeira SP, Lopes NP (2014) Mass spectrometry of flavonoid Vicenin-2, based sunlight barriers in Lychnophora species. Nat Sci Rep 4:4309. doi:10.1038/srep04309

    Article  Google Scholar 

  47. Silveira FAO, Negreiros D, Barbosa NPU et al (2015a) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil. doi:10.1007/s11104-015-2637-8

    Google Scholar 

  48. Silveira FAO, Santos JC, Franceschinelli EV, Morellato LPC, Fernandes GW (2015b) Costs and benefits of reproducing under unfavorable conditions: an integrated view of ecological and physiological constraints in a cerrado shrub. Plant Ecol 216:963–974. doi:10.1007/s11258-015-0482-8

    Article  Google Scholar 

  49. Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci USA 106:20359–20364. doi:10.1073/pnas.0903410106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Sinha S, Guptha M, Chandra P (1997) Oxidative stress induced by iron in Hydrilla verticillata (i.f) Royle: response of antioxidants. Ecotoxicol Environ Saf 38:286–291. doi:10.1006/eesa.1997.1598

    CAS  Article  PubMed  Google Scholar 

  51. Troeh FR, Thompson LM (2007) Solos e fertilidade do solo. Blackwell, Oxford

    Google Scholar 

  52. Wang M, Zou J, Duan X, Jiang X, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresour Technol 98:82–88. doi:10.1016/j.biortech.2005.11.028

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Capes Foundation, Ministry of Education of Brazil, for awarding the Master’s degree scholarship to the first author; the Department of Transport (UFOP) for logistical support in the field; the Forest State Institute of Minas Gerais (IEF) for allowing this study at the Itacolomi, Ouro Branco, and Rola-Moça State Parks as well as at the Moeda Natural Monument; the Samarco mining and the National Steel Company for allowing this study on their private land; Dr. Maria Cristina Teixeira Braga Messias for providing the results of ten soil analyses from the Samarco mining sampling area; and Núbia Ribeiro Campos for illustrating the architectural morphotypes of the plants and Carolina Souza Sarno for creating the sampling map.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amauri Pires Bueno.

Additional information

Communicated by Kun-Fang Cao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bueno, A.P., Ribeiro, S.P., Antunes, D.S. et al. Edaphically distinct habitats shape the crown architecture of Lychnophora ericoides Mart. (Asteraceae) on tropical mountaintops. Plant Ecol 218, 773–784 (2017). https://doi.org/10.1007/s11258-017-0728-8

Download citation

Keywords

  • Harsh habitats
  • Rocky complexes
  • Soil adaptation
  • Plant architecture
  • Reproductive potential