Skip to main content

Advertisement

Log in

Pinus nigra Arn. ssp salzmannii early recruitment and initial seedling growth in warmer and drier locations: the role of seed and soil provenance

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Current decreasing precipitation and increasing temperatures promote the likelihood of extreme drought events and may alter the recruitment capacities of tree species. Spanish black pine (Pinus nigra ssp. salzmannii) initial recruitment is being one of the most affected pine species by changing conditions with alterations in the future species distribution. In this context, a cross-exchange experiment was implemented using an outdoor nursery located in a warmer and drier location for testing different Spanish Black pine seeds and soil provenance combinations in relation to early recruitment and initial seedling growth. Soil and seeds were collected at a high (HA, 1641 m.a.s.l.) and low (LA, 1099 m.a.s.l.) altitude in Cuenca Mountains (Spain). Then, a cross-sown experiment using HA and LA soils and seeds was set up in an outdoor nursery, which is located in Albacete (704 m.a.s.l.). Soil quality, seedling emergence, seedling survival, initial seedling growth and total seedling dry mass were measured after one year. We found higher seed emergence and seedling survival by combining LA soil with LA seeds or HA soil with HA seeds. Seedlings from LA seeds with both soil origins and seedlings from HA seeds with LA soils allocated more biomass to roots than seedlings from HA sites growing in HA soils under drier and warmer conditions. These results support the idea that autochthonous provenances have the potential to adapt to changing climatic conditions in their habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acosta-Martínez V, Cruz L, Sotomayor-Ramírez D, Pérez-Alegría L (2007) Enzyme activities as affected by soil properties and land use in a tropical watershed. Appl Soil Ecol 35:35–45

    Article  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, London

    Google Scholar 

  • Bastida F, Moreno JL, Hernández T, García C (2007) The long-term effects of the management of a forest soil on its carbon content, microbial biomass and activity under a semi-arid climate. Appl Soil Ecol 37:53–62

    Article  Google Scholar 

  • Bastida F, Barbera GG, García C, Hernández T (2008) Influence of orientation, vegetation and season on soil microbial and biochemical characteristics under semiarid conditions. Appl Soil Ecol 38:62–70

    Article  Google Scholar 

  • Bischoff A, Steinger T, Müller-Schärer H (2010) The importance of plant provenance and genotypic diversity of seed material used for ecological restoration. Restor Ecol 18(3):338–348

    Article  Google Scholar 

  • Bradshaw AD, McNeilly T (1991) Evolutionary response to global climate change. Ann Bot 67(5–14 Suppl.):1

    Google Scholar 

  • Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K (2015) The interdisciplinary nature of soil. Soil 1:117–129. doi:10.5194/soil-1-117-2015

    Article  Google Scholar 

  • Cerdà A (1998) Effect of climate on surface flow along a climatological gradient in israel: a field rainfall simulation approach. J Arid Environ 38(2):145–159. doi:10.1006/jare.1997.0342

    Article  Google Scholar 

  • Cerdà A, García-Fayos P (2002) The influence of seed size and shape on their removal by water erosion. CATENA 48(4):293–301. doi:10.1016/S0341-8162(02)00027-9.5

    Article  Google Scholar 

  • Chapin FS III, Bloom AJ, Field CB, Waring RH (1987) Plant response to multiple environmental factors. Bioscience 37:49–57

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, KwonW-T Laprise R, Rueda VM, Mearns Menéndez CG, Räisänen J, Rinke A, Whetton ASP (2007) Regional climate projections. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 847–943

    Google Scholar 

  • Dalling JW, Davis SA, Schutte BJ, Arnold AE (2011) Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J Ecol 99:89–95

    Article  Google Scholar 

  • Davis MB, Zabinski C (1992) Changes in geographical range resulting from outdoor nursey warming effects on biodiversity in forests. In: Peters RL, Lovejoy TL (eds) Global warming and biological diversity. Yale University Press, New Haven, pp 298–308

    Google Scholar 

  • Eivazi F, Tabatabai MA (1990) Factors affecting glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606

    Article  Google Scholar 

  • Ferreira ACC, Leite LFC, Araújo ASF, Eisenhauer N (2016) Land-use type effects on soil organic carbon and microbial properties in a semi-arid region of Northeast Brazil. Land Degrad Dev 27(2):171–178. doi:10.1002/ldr.2282

    Article  Google Scholar 

  • Gallery RE, Moore DJP, Dalling JW (2010) Interspecific variation in susceptibility to fungal pathogens in seeds of ten tree species in the neotropical genus Cecropia. J Ecol 98:147–155

    Article  Google Scholar 

  • Garrido JL, Rey PJ, Herrera CM, Ramírez JM (2012) Negative evidence of local adaptation to the establishment conditions in a perennial herb. Plant Ecol 213:1555–1569

    Article  Google Scholar 

  • Gavinet J, Vilagrosa A, Chirino E, Granados ME, Vallejo VR (2015) Hardwood seedling establishment below Aleppo pine depends on thinning intensity in two Mediterranean sites. Ann For Sci 72(8):999–1008

    Article  Google Scholar 

  • Hannam KD, Quideau SA, Kishchuk BE (2006) Forest floor microbial communities in relation to stand composition and timber harvesting in northern Alberta. Soil Biol Biochem 38:2565–2575

    Article  CAS  Google Scholar 

  • Hedo de Santiago J, Lucas-Borja ME, Wic-Baena C, Andrés-Abellán M, de las Heras J (2016) Effects of thinning and induced drought on microbiological soil properties and plant species diversity at dry and semiarid locations. Land Degrad Dev 27(4):1151–1162. doi:10.1002/ldr.2361

    Article  Google Scholar 

  • Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173:579–588

    Article  PubMed  Google Scholar 

  • Herrera CM (1992) Historical effects and sorting processes as explanations for contemporary ecological patterns—character syndromes in Mediterranean woody plants. Am Nat 140:421–446

    Article  Google Scholar 

  • Higgins PAT, Harte J (2006) Biophysical and biogeochemical responses to climate change depend on dispersal and migration. Bioscience 56:407–417

    Article  Google Scholar 

  • Holmgren M, Scheffer M (2001) El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4:151–159

    Article  Google Scholar 

  • Hufford KM, Mazer SJ, Camara MD (2008) Local adaptation and effects of grazing among seedlings of two native California bunchgrass species: implications for restoration. Restor Ecol 16:59–69

    Article  Google Scholar 

  • Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPH, Pereira JS, Prinz A, Scherer-Lorenzen M, Siamantziouras ASD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544. doi:10.1046/j.1461-0248.2001.00262.x

    Article  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fert Soils 6:68–72

    Article  CAS  Google Scholar 

  • Kawecki T, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen-inorganic forms. In: Page AL (ed) Methods of soil analysis. Agron. Monogr. 9. ASA and SSSA, Madison, pp 643–698

  • Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, van der Putten WH, Bardgett RD, Moolenaar S, Mol G, Jansen B, Fresco LO (2016) The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2:111–128. doi:10.5194/soil-2-111-2016

    Article  Google Scholar 

  • Kubo M, Sakio H, Shimano K, Ohno K (2004) Factors influencing seedling emergence and survival in Cercidiphyllum japonicum. Folia Geobot 39:225–234. doi:10.1007/BF02804779

    Article  Google Scholar 

  • Kuster T, Arend M, Günthardt-Goerg M, Schulin R (2013) Root growth of different oak provenances in two soils under drought stress and air warming conditions. Plant Soil 369:61–71. doi:10.1007/s11104-012-1541-8

    Article  CAS  Google Scholar 

  • Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295

    Article  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. An Rev Ecol Syst 27:237–277

    Article  Google Scholar 

  • Lucas-Borja ME, Fonseca T, Parresol B, Silva-Santos P, García-Morote FA, Tíscar-Oliver PA (2011) Modelling Spanish black pine seedling emergence: establishing management strategies for endangered forest areas. For Ecol Manage 262:195–202

    Article  Google Scholar 

  • Lucas-Borja ME, Fonseca Fidalgo T, Linares JC, García-Morote FA, López-Serrano FR (2012a) Does the recruitment pattern of Spanish black pine (Pinus nigra Arn ssp. salzmannii) change the regeneration niche over the early life cycle of individuals? For Ecol Manage 284:93–99

    Article  Google Scholar 

  • Lucas-Borja ME, Fonseca Fidalgo T, Lousada JL, Silva-santos P, Martínez García E, Andrés Abellán M (2012b) Natural regeneration of Spanish black pine (Pinus nigra Arn. ssp. salzmannii (Dunal) Franco) at contrasting altitudes in a Mediterranean mountain area. Ecol Res 27(5):913–921

    Article  Google Scholar 

  • Lucas-Borja ME, Hedo J, Cerdá A, Candel-Pérez D, Viñegla B (2016) Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in mediterranean Spanish Black Pine (Pinus Nigra Ar. Ssp. Salzmannii) forest. Sci Total Environ 562:145–154. doi:10.1016/j.scitotenv.2016.03.160

    Article  CAS  PubMed  Google Scholar 

  • Macci C, Doni S, Peruzzi E, Mennone C, Masciandaro G (2013) Biostimulation of soil microbial activity through organic fertilizer and almond tree association. Land Degrad Dev 27(2):335–345. doi:10.1002/ldr.2234

    Article  Google Scholar 

  • Macel M, Lawson CS, Mortimer SR, Smilauerova M, Bischoff A, Cremieux L, Dolezal J, Edwards AR, Lanta V, Bezemer TM, van der Putten WH, Igual JM, Rodríguez-Barrueco C, Muller-Scharer H, Steinger T (2007) Climate vs. soil factors in local adaptation of two common plant species. Ecology 88:424–433

    Article  PubMed  Google Scholar 

  • Miki T (2012) Microbe-mediated plant–soil feedback and its roles in a changing world. Ecol Res 27(3):509–520

    Article  CAS  Google Scholar 

  • Mol G, Keesstra SD (2012) Editorial: soil science in a changing world. Curr Opin Environ Sustain 4:473–477

    Article  Google Scholar 

  • Moles AT, Westoby M (2004) What do seedlings die from and what are the implications for evolution of seed size? Oikos 106:193–199

    Article  Google Scholar 

  • Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196–202

    Article  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity. Beyond nature and nurture. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Prévosto B, Gavinet J, Ripert C, Fernandez C (2015) Identification of windows of emergence and seedling establishment in a pine Mediterranean forest under controlled disturbances. Basic Appl Ecol 16(1):36–45

    Article  Google Scholar 

  • Pugnaire FI, Luque MT, Armas C, Gutiérrez L (2006) Colonization processes in semi-arid Mediterranean old-fields. J Arid Environ 65:591–603

    Article  Google Scholar 

  • Quero JL, Villar R, Marañón T, Zamora R, Poorter L (2007) Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments. Am J Bot 94(11):1795–1803

    Article  PubMed  Google Scholar 

  • Raabová J, Münzbergová Z, Fischer M (2011) The role of spatial scale and soil for local adaptation in Inula hirta. Basic Appl Ecol 12:152–160

    Article  Google Scholar 

  • Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009) Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). For Ecol Manage 257:1676–1683

    Article  Google Scholar 

  • Richter S, Kipfer T, Wohlgemuth T, Guerrero CC, Ghazoul J, Mose B (2012) Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169:269–279

    Article  PubMed  Google Scholar 

  • Rodríguez-García E, Bravo F, Spies TA (2011) Effects of overstorey canopy, plant-plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. For Ecol Manage 262:244–251

    Article  Google Scholar 

  • Santamaría L, Figuerola J, Pilon JJ, Mjelde M, Green AJ, De Boer T, King RA, Gornall RJ (2003) Plant performance across latitude: the role of plasticity and local adaptation in an aquatic plant. Ecology 84:2454–2461. doi:10.1890/02-0431

    Article  Google Scholar 

  • Sardans J, Peñuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean holm oak forest. Soil Biol Biochem 37:455–461

    Article  CAS  Google Scholar 

  • Savolainen O, Bokma F, Knürr T, Kärkkäinen K, Pyhäjärvi T, Wachowiak W (2007) Adaptation of forest trees to climate change. In: Koskela J, Buck A, Teissier du Cros E (eds) Climate change and forest genetic diversity: implications for sustainable forest management in Europe. Biodiversity International, Rome, Italy, pp 19–30

  • Serrada Hierro R (2002) Consideraciones sobre el tratamiento de masas de pino laricio (Pinus nigra Arn.) en la zona sur del sistema ibérico. Comparación con el pino silvestre. In: Grande Ortiz MA, García Abril A, Rodríguez Solano R (eds) Gestión Forestal sostenible de los pinares de Pinus nigra Arn. Fundación Conde del Valle de Salazar. Madrid

  • Shea KL (1989) Genetic variation between and within populations of Engelmann spruce and subalpine fir. Genome. 33:1–8. doi:10.1139/g90-001

    Article  Google Scholar 

  • Soil Survey Staff (1999) Soil Taxonomy, a basic system of soil classification for making and interpreting soil surveys; 2nd edn. Agricultural Handbook 436, Natural Resources Conservation Service, USDA, Washington DC, USA, p 869

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tíscar-Oliver PA, Linares JC (2014) Large-scale regeneration patterns of Pinus nigra Subsp. salzmannii: poor evidence of increasing facilitation across a drought gradient. Forests. 5:1–20. doi:10.3390/f5010001

    Article  Google Scholar 

  • Tíscar-Oliver PA, Lucas-Borja ME, Candel Pérez D (2011) Changes in the structure and composition of two Pinus nigra subsp. salzmannii forests over a century of different silvicultural treatments. For Syst 20(3):525–535

  • Von Mersi W, Schinner F (1991) An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol Fert Soils. 11:216–220

    Article  Google Scholar 

  • Yang L, Chen Y, Huang Y, Li Y, Wen M, Liu N, Wang J (2016) Effects of shrub islands created by rhodomyrtus tomentosa (Aiton) Hassk. on the growth, chlorophyll fluorescence, and chloroplast ultrastructure of pine seedlings in degraded land of South China. Land Degrad Dev 27(3):729–737. doi:10.1002/ldr.2401

    Article  Google Scholar 

  • Yazdanpanah N, Mahmoodabadi M, Cerdà A (2016) The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 266:58–65. doi:10.1016/j.geoderma.2015.11.032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Lucas-Borja.

Additional information

Communicated by Erik P Hamerlynck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas-Borja, M.E., Candel-Pérez, D., Tíscar, P.A. et al. Pinus nigra Arn. ssp salzmannii early recruitment and initial seedling growth in warmer and drier locations: the role of seed and soil provenance. Plant Ecol 218, 761–772 (2017). https://doi.org/10.1007/s11258-017-0727-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0727-9

Keywords

Navigation