Skip to main content

Advertisement

Log in

Euphorbiaceae responses to chronic anthropogenic disturbances in Caatinga vegetation: from species proliferation to biotic homogenization

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Chronic anthropogenic disturbances (CAD) have posed tangible threats to biodiversity-relevant tropical biotas, but community- and ecosystem-level impacts still remain poorly understood. Here we address a 152 km2 Caatinga landscape in northeast Brazil in order to investigate how Euphorbiaceae species and these seasonally dry tropical plant assemblages respond to a CAD gradient. Woody plant species were recorded across 26 0.06 ha spatially independent plots exposed to CAD. Euphorbiaceae species accounted for 78.9% of all plants and 21.5% of all species, with some species reaching up to 283 individuals per 0.06 ha or 92% of all recorded plants. Despite such contributions, Euphorbiaceae total and relative abundance, as well as total and relative richness, did not correlate with disturbance intensity at plot scale. At species level, some Euphorbiaceae species responded positively to disturbance, while others declined or did not exhibit a consistence response (i.e., positive, negative, and neutral responses). CAD intensity affected patterns of community similarity considering the whole plant assemblage as follow: first, plot-level disturbance correlated positively with NMDS scores; second, C. sonderianus experienced a 100% increment in terms of relative abundance along the disturbance gradient, and its plot-level abundance correlated positivity with NMDS scores; and finally, cross-plot similarity correlated positively with cross-plot geographical distance. Among others, our results suggest that CAD may favor some particular species (i.e., proliferating taxa), leading to community-level changes, including biotic homogenization as disturbance increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ab’Sáber AN (1999) Dossiê Nordeste seco. Estudos avançados 13:115–143

    Article  Google Scholar 

  • Acharya KP, Dangi RB (2009) Case studies on measuring and assessing forest degradation in Nepal: review of data and methods. Forest Resources Assessment Programme, Rome

    Google Scholar 

  • Andrade LD, Pereira IM, Leite UT, Barbosa MRV (2005) Análise da cobertura de duas fitofisionomias de caatinga, com diferentes históricos de uso, no município de São João do Cariri, estado da Paraíba. Cerne 11:253–262

    Google Scholar 

  • Araujo EL (1998) Aspectos da dinamica populacional de duas especies em floresta tropical seca (Caatinga), nordeste do Brasil. Thesis. Universidade Estadual de Campinas

  • Blackie R, Baldauf C, Gautier D, Gumbo D, Kassa H, Parthasarathy N, Paumgarten F, Sola P, Pulla S, Waeber P, Sunderland TCH (2014) Tropical dry forests: the state of global knowledge and recommendations for future research. In: CIFOR Discussion Paper. Center for International Forestry Research (CIFOR), Bogor, pp 1–30

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51. doi:10.1016/S0169-5347(00)02033-4

    Article  CAS  PubMed  Google Scholar 

  • Borchert R (1980) Phenology and ecophysiology of tropical trees: Erythrina poeppigiana O. F. Cook. Ecology 61:1065–1074

    Article  Google Scholar 

  • Burns JH, Strauss SY (2011) More closely related species are more ecologically similar in an experimental test. Proc Natl Acad Sci USA 108:5302–5307. doi:10.1073/pnas.1013003108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cândido M (1998) Caatinga-importante recurso forrageiro do Nordeste Brasileiro. Dissertation, Universidade Federal de Viçosa

  • Carvalho FC, Araújo Filho JA, Garcia R, Pereira Filho JM, Albuquerque VM (2001) Efeito do corte da parte aérea na sobrevivência do marmeleiro (Croton sonderianus Müll. Arg.). Rev Bras Zootecn 30:930–934

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Davidar P, Sahoo S, Mammen PC, Acharya P, Puyravaud JP, Arjunan M, Garrigues JP, Roessingh K (2010) Assessing the extent and causes of forest degradation in India: where do we stand? Biol Conserv 143:2937–2944. doi:10.1016/j.biocon.2010.04.032

    Article  Google Scholar 

  • EMBRAPA (2001) Mapa exploratório de solos do município de Parnamirim, PE. Empresa Brasileira de Pesquisa Agropecuária, Embrapa Solos UEP

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  CAS  PubMed  Google Scholar 

  • Gaoue OG, Horvitz CC, Ticktin T, Steiner UK, Tuljapurkar S (2013) Defoliation and bark harvesting affect life-history traits of a tropical tree. J Ecol 101:1563–1571. doi:10.1111/1365-2745.12140

    Article  Google Scholar 

  • Gonzalez A, Loreau M (2009) The causes and consequences of compensatory dynamics in ecological communities. Ann Rev Ecol Evol Syst 40:393–414. doi:10.1146/annurev.ecolsys.39.110707.173349

    Article  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693

    Article  CAS  PubMed  Google Scholar 

  • He Q, Cui B, Bertness MD, An Y (2012) Testing the importance of plant strategies on facilitation using congeners in a coastal community. Ecology 93:2023–2029. doi:10.1890/12-0241.1

    Article  PubMed  Google Scholar 

  • IBGE (1985) Atlas Nacional do Brasil: Região Nordeste. Instituto Brasileiro de Geografia Estatística, Rio de Janeiro

    Google Scholar 

  • IBGE (2011) Censo demográfico 2010 - Características da população e dos domicílios. Instituto Brasileiro de Geografia Estatística, Rio de Janeiro

    Google Scholar 

  • Karanth KK, DeFries R (2010) Conservation and management in human-dominated landscapes: case studies from India. Biol Conserv 143:2865–2869

    Article  Google Scholar 

  • Krebs CJ (1999) Ecological methodology. Benjamin/Cummings, California

    Google Scholar 

  • Kumar R, Shahabuddin G (2005) Effects of biomass extraction on vegetation structure, diversity and composition of forests in Sariska Tiger Reserve, India. Environ Conserv 32:248–259. doi:10.1017/S0376892905002316

    Article  Google Scholar 

  • Laurance WF, Cochrane MA, Bergen S, Fearnside PM, Delamônica P, Barber C, D’Angelo S, Fernandes T (2001) The future of the Brazilian Amazon. Science 291:438–439. doi:10.1126/science.291.5503.438

    Article  CAS  PubMed  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade AC, Fearnside PM, Ribeiro JEL, Capretz RL (2006) Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469–482. doi:10.1890/05-0064

    Article  PubMed  Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116. doi:10.1016/j.tree.2013.12.001

    Article  PubMed  Google Scholar 

  • Leal IR, da Silva JMC, Tabarelli M, Lacher TE (2005) Changing the course of biodiversity conservation in the caatinga of northeastern Brazil. Conserv Biol 19:701–706. doi:10.1111/j.1523-1739.2005.00703.x

    Article  Google Scholar 

  • Leal L, Andersen A, Leal I (2014) Anthropogenic disturbance reduces seed-dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia 174:173–181. doi:10.1007/s00442-013-2740-6

    Article  PubMed  Google Scholar 

  • Lôbo D, Leão T, Melo FPL, Santos AMM, Tabarelli M (2011) Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers Distrib 17:287–296. doi:10.1111/j.1472-4642.2010.00739.x

    Article  Google Scholar 

  • Martorell C, Peters EM (2005) The measurement of chronic disturbance and its effects on the threatened cactus Mammillaria pectinifera. Biol Conserv 124:199–207. doi:10.1016/j.biocon.2005.01.025

    Article  Google Scholar 

  • Martorell C, Garcillán P, Casillas F (2012) Ruderality in extreme-desert cacti? Population effects of chronic anthropogenic disturbance on Echinocereus lindsayi. Popul Ecol 54:335–346. doi:10.1007/s10144-012-0307-8

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi:10.1016/S0169-5347(99)01679-1

    Article  CAS  PubMed  Google Scholar 

  • Medeiros SS, Cavalcante AMB, Perez Marin AM, Tinôco LBM, Hernan SI, Pinto TF (2012) Sinopse do censo demográfico para o semiárido brasileiro. INSA, Campina Grande

    Google Scholar 

  • Mehta VK, Sullivan PJ, Walter MT, Krishnaswamy J, DeGloria SD (2008) Impacts of disturbance on soil properties in a dry tropical forest in Southern India. Ecohydrology 1:161–175. doi:10.1002/eco.15

    Article  CAS  Google Scholar 

  • Milla R, Iriondo AEM (2011) Congruence between geographic range distribution and local competitive ability of two Lupinus species. Am J Bot 98:1456–1464. doi:10.3732/ajb.1000519

    Article  PubMed  Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosystems and human well-being. Island Press, Washington

    Google Scholar 

  • Mishra BP, Tripathi OP, Tripathi RS, Pandey HN (2004) Effects of anthropogenic disturbance on plant diversity and community structure of a sacred grove in Meghalaya, northeast India. Biodivers Conserv 13:421–436. doi:10.1023/B:BIOC.0000006509.31571.a0

    Article  Google Scholar 

  • MMA (2011) Monitoramento do desmatamento nos biomas brasileiros por satélite—Monitoramento do Bioma Caatinga 2002 a 2008. Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Moreira JN, Lira MA, Santos MVF, Ferreira MA, Araújo GGL, Ferreira RLC, Silva G (2006) Caracterização da vegetação de Caatinga e da dieta de novilhos no Sertão de Pernambuco. Pesqui Agropecu Bras 41:1643–1651

    Article  Google Scholar 

  • Nimer E (1972) Climatologia da região Nordeste do Brasil. Introdução à climatologia dinâmica. R Bras Geogr 34:3–51

    Google Scholar 

  • Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. doi:10.1016/j.tree.2003.09.010

    Article  PubMed  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457. doi:10.1146/annurev.ecolsys.110308.120327

    Article  Google Scholar 

  • Portilla-Alonso RM, Martorell C (2011) Demographic consequences of chronic anthropogenic disturbance on three populations of the endangered globose cactus Coryphantha werdermannii. J Arid Environ 75:509–515. doi:10.1016/j.jaridenv.2011.01.015

    Article  Google Scholar 

  • Portillo-Quintero CA, Sánchez-Azofeifa GA (2010) Extent and conservation of tropical dry forests in the Americas. Biol Conserv 143:144–155. doi:10.1016/j.biocon.2009.09.020

    Article  Google Scholar 

  • Prado DE (2003) As caatingas da América do Sul. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e conservação da Caatinga, ditora Universitária da UFPE, Recife, pp 3–73

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org

  • Ribeiro EMS, Arroyo-Rodríguez V, Santos BA, Tabarelli M, Leal IR (2015) Chronic anthropogenic disturbances driving the silent degradation of vegetation in the Brazilian Caatinga. J Appl Ecol 52:611–620. doi:10.1111/1365-2664.12420

    Article  Google Scholar 

  • Ribeiro EMS, Santos BA, Arroyo-Rodríguez V, Tabarelli M, Souza G, Leal IR (2016) Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology 97:1583–1592. doi:10.1890/15-1122.1

    Article  PubMed  Google Scholar 

  • Ribeiro-Neto JD, Arnan X, Tabarelli M, Leal IR (2016) Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodivers Conserv 25:943–956. doi:10.1007/s10531-016-1099-5

    Article  Google Scholar 

  • Rivera G, Elliott S, Caldas L, Nicolossi G, Coradin V, Borchert R (2002) Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445–456. doi:10.1007/s00468-002-0185-3

    Article  Google Scholar 

  • Rodal MJN, Sampaio EV, Figueiredo MA (1992) Manual sobre métodos de estudo florístico e fitossociológico: ecossistema caatinga. Sociedade Botânica do Brasil, Brasília

    Google Scholar 

  • Sagar R, Singh JS (2003) Predominant phenotypic traits of disturbed tropical dry deciduous forest vegetation in northern India. Commun Ecol 4:63–71. doi:10.1556/ComEc.4.2003.1.9

    Google Scholar 

  • Sampaio E (1995) Overview of the Brazilian caatinga. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sánchez-Azofeifa GA, Quesada M, Rodríguez JP, Nassar JM, Stoner KE, Castillo A, Garvin T, Zent EL, Calvo-Alvarado JC, Kalacska MER, Fajardo L, Gamon JA, Cuevas-Reyes P (2005) Research priorities for Neotropical dry forests. Biotropica 37:477–485. doi:10.1046/j.0950-091x.2001.00153.x-i1

    Google Scholar 

  • Santana D, Lira M, Santos M (2011) Caracterização da caatinga e da dieta de novilhos fistulados, na época chuvosa, no semiárido de Pernambuco. Rev Bras Zootec 40:69–78

    Article  Google Scholar 

  • Santos MJ, Machado IC, Lopes AV (2005) Biologia reprodutiva de duas espécies de Jatropha L. (Euphorbiaceae) em Caatinga. Nordeste do Brasil. Rev Bras Bot 28:361–373. doi:10.1590/s0100-84042005000200015

    Google Scholar 

  • Santos JC, Leal IR, Almeida-Cortez JS, Fernandes GW, Tabarelli M (2011) Caatinga: the scientific negligence experienced by a dry tropical forest. Trop Conserv Sci 4:276–286

    Article  Google Scholar 

  • Shahabuddin G, Prasad S (2004) Assessing ecological sustainability of non-timber forest produce extraction: the indian scenario. Conserv Soc 2:235–250

    Google Scholar 

  • Silva RA, Santos AMM, Tabarelli M (2003) Riqueza de plantas lenhosas em cinco unidades de paisagem da Caatinga. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e Conservação da Caatinga. Editora Universitária da UFPE, Recife, pp 337–366

    Google Scholar 

  • Singh SP (1998) Chronic disturbance, a principal cause of environmental degradation in developing countries. Environ Conserv 25:1–2. doi:10.1017/s0376892998000010

    Article  CAS  Google Scholar 

  • Singh J, Pandey U, Tiwari A (1984) Man and forests: a central Himalayan case study. Ambio 13:80–87

    Google Scholar 

  • Tabarelli M, Lopes AV, Peres CA (2008) Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40:657–661. doi:10.1111/j.1744-7429.2008.00454.x

    Article  Google Scholar 

  • Tabarelli M, Peres CA, Melo FPL (2012) The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biol Conserv 155:136–140. doi:10.1016/j.biocon.2012.06.020

    Article  Google Scholar 

  • Tilman D, Lehman C (2001) Human-caused environmental change: impacts on plant diversity and evolution. Proc Natl Acad Sci USA 98:5433–5440. doi:10.1073/pnas.091093198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol Rev 87:661–685. doi:10.1111/j.1469-185X.2011.00216.x

    Article  PubMed  Google Scholar 

  • Vitorio LAP (2013) Densidade da madeira de espécies da Caatinga. Dissertation, Universidade Estadual da Paraíba

Download references

Acknowledgements

This study was supported by the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE; process 04-2.05/08) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; process 772902009-4). K.F. Rito thanks CNPq for a master scholarship and MT and IRL for productivity grants. We would like to thank the Estação de Agricultura Irrigada de Parnamirim (UFRPE) for the use of their infrastructure, Centro de Pesquisas Ambientais do Nordeste (CEPAN) for logistical support and the landowners for giving us the permission to work on their properties. We would also like to thank L.C. Leal, G. Burle, and J.D. Ribeiro Neto for their help with field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inara R. Leal.

Additional information

Communicated by Lesley Rigg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rito, K.F., Tabarelli, M. & Leal, I.R. Euphorbiaceae responses to chronic anthropogenic disturbances in Caatinga vegetation: from species proliferation to biotic homogenization. Plant Ecol 218, 749–759 (2017). https://doi.org/10.1007/s11258-017-0726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0726-x

Keywords

Navigation