Advertisement

Plant Ecology

, Volume 218, Issue 5, pp 501–515 | Cite as

Combined effects of climate, habitat, and disturbance on seedling establishment of Pinus pinaster and Eucalyptus globulus

  • Patrícia FernandesEmail author
  • Cristina Máguas
  • Otília Correia
Article

Abstract

The natural expansion of forestry trees into habitats outside plantations is a concern for managers and conservationists. We studied seedling emergence and survival of the two main forestry species in Portugal: Eucalyptus globulus (exotic) and Pinus pinaster (native); using a seed addition experiment. Our main objective was to evaluate the combined effects of climate (mild-summer and warm-summer climate), habitat (oak forest and shrubland), and disturbance (vegetation removal and non-disturbance) on the seedling establishment of species in semi- and natural habitats. Furthermore, we tested the effect of the “sowing season” (autumn and spring) on seedling emergence and survival. Overall, seedling establishment of both species was enhanced by light and water. However, we found important interactions among climate, habitat, and disturbance on both species’ emergence and survival. The differences between habitats were more evident in the mild-summer climate than in the warm-summer climate. Our results also suggested that seedling survival may be enhanced by shrub cover in drier conditions (warm-summer climate). Eucalyptus globulus appears more sensitive to drought and disturbance changes than P. pinaster. In shrublands and mild-summer climate conditions, disturbance especially promoted E. globulus seedling establishment, while the forest canopy and the shade appeared to control it in both climatic conditions. After the first summer life, very low seedling survival was observed in both species, although the colonization of new areas appeared to be more limited for E. globulus. Our study suggests that climate conditions influence the effect (direction and intensity) of habitat and disturbance (plant–plant interactions) on seedling survival. Thus, the effect of light availability (forest canopy) and disturbance (vegetation removal) on these species establishment is climate context-dependent. This study presents very useful information to understand future shifts in these species distribution and has direct applications for the management of natural establishment outside the planted areas, and the management of the understorey to favor forest regeneration or limit forest colonization.

Keywords

Biological invasions Drought tolerance Forestry species Habitat suitability Seedling survival Portugal 

Notes

Acknowledgements

This research was funded by Fundação para a Ciência e Tecnologia (FCT) and the Navigator company in the frame of Patrícia Fernandes PhD scholarship from FCT (SFRH/BDE/51709/2011). The authors are grateful to RAIZ—Instituto de Investigação da Floresta e Papel—for logistical support and allowing the establishment of our field sites. Namely, we would like to thank: Alexandre, Carlos Valente and Sofia Corticeiro. We also express our gratitude to all colleagues who helped to perform field work.

References

  1. Águas A, Ferreira A, Maia P, Fernandes PM, Roxo L, Keizer J, Silva JS, Rego FC, Moreira F (2014) Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. For Ecol Manag 323:47–56. doi: 10.1016/j.foreco.2014.03.012 CrossRefGoogle Scholar
  2. Aguiar C, Capelo J, Catry F (2007) A distribuição dos pinhais em Portugal. In: Silva JS (ed) Pinhais e eucaliptais—A floresta cultivada Colecção Árvores e Florestas de Portugal. Jornal Público, Lisbon, pp 89–104Google Scholar
  3. Almeida MH, Chaves MM, Silva JC (1994) Cold acclimation in eucalypt hybrids. Tree Physiol 14:921–932. doi: 10.1093/treephys/14.7-8-9.921 CrossRefPubMedGoogle Scholar
  4. Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biological Conservation. doi: 10.1016/j.biocon.2006.03.023 Google Scholar
  5. Alves AM, Pereira JS, Silva JMN (2007) A introdução e a expansão do eucalipto em Portugal. In: Alves AM, Pereira JS, Silva JMN (eds) O eucaliptal em Portugal. Impactes ambientais e investigação científica. ISAPress, Lisboa, pp 13–24Google Scholar
  6. Alves AM, Pereira JS, Correia AV (2012) Silvicultura – A Gestão dos Ecossistemas FlorestaisGoogle Scholar
  7. Barbéro M, Loisel R, Quézel P, Richardson DM, Romane F (1998) Pines of the Mediterranean Basin. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 153–170Google Scholar
  8. Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For Ecol Manag 254:1–15. doi: 10.1016/j.foreco.2007.09.038 CrossRefGoogle Scholar
  9. Becerra PI, Bustamante RO (2011) Effect of a native tree on seedling establishment of two exotic invasive species in a semiarid ecosystem. Biol Invasions 13:2763–2773. doi: 10.1007/s10530-011-9961-6 CrossRefGoogle Scholar
  10. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193. doi: 10.1016/0169-5347(94)90088-4 CrossRefPubMedGoogle Scholar
  11. Brundu G, Richardson DM (2016) Planted forests and invasive alien trees in Europe: a Code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota 30:5–47. doi: 10.3897/neobiota.30.7015 CrossRefGoogle Scholar
  12. Callaham MA, Stanturf JA, Hammond WJ, Rockwood DL, Wenk ES, O’Brien JJ (2013) Survey to evaluate escape of eucalyptus spp. Seedlings from plantations in southeastern USA. Int J For Res. doi: 10.1155/2013/946374 Google Scholar
  13. Calviño-Cancela M, Rubido-Bará M (2013) Invasive potential of Eucalyptus globulus: seed dispersal, seedling recruitment and survival in habitats surrounding plantations. For Ecol Manag 305:129–137. doi: 10.1016/j.foreco.2013.05.037 CrossRefGoogle Scholar
  14. Calvo L, Santalla S, Marcos E, Valbuena L, Tárrega R, Luis E (2003) Regeneration after wildfire in communities dominated by Pinus pinaster, an obligate seeder, and in others dominated by Quercus pyrenaica, a typical resprouter. For Ecol Manag 184:209–223. doi: 10.1016/S0378-1127(03)00207-X CrossRefGoogle Scholar
  15. Castro J, Zamora R, Hodar JA, Gomez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277. doi: 10.1111/j.0022-0477.2004.00870.x CrossRefGoogle Scholar
  16. Catry FX, Moreira F, Deus E, Silva JS, Águas A (2015) Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: results from a countrywide survey. Biol Invasions 17:3163–3181. doi: 10.1007/s10530-015-0943-y CrossRefGoogle Scholar
  17. Cavender-Bares J, Bazzaz FA (2000) Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124:8–18. doi: 10.1007/PL00008865 CrossRefPubMedGoogle Scholar
  18. Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458. doi: 10.1111/j.1365-2664.2007.01398.x CrossRefGoogle Scholar
  19. Correia I, Almeida H (2004) Variabilidade do Crescimento e da Forma de Proveniências de Pinus pinaster Aiton aos 8 Anos, na Mata Nacional do Escaroupim. Silva Lusitana 12:151–182Google Scholar
  20. Correia MJ, Torres F, Pereira JS (1989) Water and nutrient supply regimes and the water relations of juvenile leaves of Eucalyptus globulus. Tree Physiol 5:459–471. doi: 10.1093/treephys/5.4.459 CrossRefPubMedGoogle Scholar
  21. da Silva PHM, Poggiani F, Sebbenn AM, Mori ES (2011) Can Eucalyptus invade native forest fragments close to commercial stands? For Ecol Manag 261:2075–2080. doi: 10.1016/j.foreco.2011.03.001 CrossRefGoogle Scholar
  22. Daehler CC, Denslow JS, Ansari S, Kuo H (2004) A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific islands. Conserv Biol 18:360–368. doi: 10.1111/j.1523-1739.2004.00066.x CrossRefGoogle Scholar
  23. Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecol Lett 4:421–428. doi: 10.1046/j.1461-0248.2001.00246.x CrossRefGoogle Scholar
  24. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  25. Dodet M, Collet C (2012) When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol Invasions 14:1765–1778. doi: 10.1007/s10530-012-0202-4 CrossRefGoogle Scholar
  26. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  27. Essl F, Moser D, Dullinger S, Mang T, Hulme PE (2010) Selection for commercial forestry determines global patterns of alien conifer invasions. Divers Distrib 16:911–921. doi: 10.1111/j.1472-4642.2010.00705.x CrossRefGoogle Scholar
  28. FAO (2015) Global Forest Resources Assessment (2015) How are the world’s forests changing?. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  29. Fernandes P, Antunes C, Pinho P, Máguas C, Correia O (2016) Natural regeneration of Pinus pinaster and Eucalyptus globulus from plantation into adjacent natural habitats. For Ecol Manag 378:91–102. doi: 10.1016/j.foreco.2016.07.027 CrossRefGoogle Scholar
  30. Figueiral I (1995) Charcoal analysis and the history of Pinus pinaster (cluster pine) in Portugal. Rev Palaeobot Palynol 89:441–454CrossRefGoogle Scholar
  31. Gassó N, Basnou C, Vilà M (2009) Predicting plant invaders in the Mediterranean through a weed risk assessment system. Biol Invasions 12:463–476. doi: 10.1007/s10530-009-9451-2 CrossRefGoogle Scholar
  32. Gil L, Gordo J, Catalán G, Pardos JA (1990) Pinus pinaster Aiton en el paisaje vegetal de la Península Ibérica. Ecologia 1:469–495Google Scholar
  33. González-Muñoz N, Castro-Díez P, Fierro-Brunnenmeister N (2011) Establishment success of coexisting native and exotic trees under an experimental gradient of irradiance and soil moisture. Environ Manag 48:764–773. doi: 10.1007/s00267-011-9731-3 CrossRefGoogle Scholar
  34. Gordon DR, Flory SL, Cooper AL, Morris SK (2012) Assessing the invasion risk of Eucalyptus in the United States using the Australian weed risk assessment. Int J For Res 2012:1–7. doi: 10.1155/2012/203768 Google Scholar
  35. Hardner CM, Potts BM (1995) Inbreeding depression and changes in variation after selfing in Eucalyptus globulus ssp. globulus. Silvae Genet 44:46–54Google Scholar
  36. Higgins SI, Richardson DM (1998) Pine invasions in the southern hemisphere: modelling interactions between organism, environment and disturbance. Plant Ecol 135:79–93CrossRefGoogle Scholar
  37. Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78:1966–1975. doi: 10.1890/0012-9658(1997)078[1966:TIOFAC]2.0.CO;2 CrossRefGoogle Scholar
  38. Houle G (1996) Environmental filters and seedling recruitment on a coastal dune in subarctic Quebec (Canada). Can J Bot 74:1507–1513. doi: 10.1139/b96-181 CrossRefGoogle Scholar
  39. ICNF (2013) IFN6—Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares, Instituto da Conservação, da Natureza e das FlorestasGoogle Scholar
  40. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge university press, Cambridge, UK and New YorkGoogle Scholar
  41. Jacobs MR (1955) Growth habits of the Eucalypts. Forestry and Timber Bureau, CanberraGoogle Scholar
  42. Jordan G, Potts BM, Wiltshire R (1999) Strong, independent quantitative genetic control of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus. Heredity (Edinb) 83:179–187CrossRefGoogle Scholar
  43. Juez L, González-Martínez SC, Nanos N, de-Lucas AI, Ordóñez C, del Peso C, Bravo F (2014) Can seed production and restricted dispersal limit recruitment in Pinus pinaster Aiton from the Spanish Northern Plateau? For Ecol Manag 313:329–339. doi: 10.1016/j.foreco.2013.10.033 CrossRefGoogle Scholar
  44. Kleinbaum GG, Klein M (2005) Survival analysis: a selp-learning text, second. Springer, New YorkGoogle Scholar
  45. Larcombe MJ, Silva JS, Vaillancourt RE, Potts BM (2013) Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biol Invasions 15:2763–2781. doi: 10.1007/s10530-013-0492-1 CrossRefGoogle Scholar
  46. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536. doi: 10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2 CrossRefGoogle Scholar
  47. López M, Humara JM, Casares A, Majada J (2000) The effect of temperature and water stress on laboratory germination of Eucalyptus globulus Labill. Seeds of different sizes. Ann For Sci 57:245–250. doi: 10.1051/forest:2000115 CrossRefGoogle Scholar
  48. Lorentz KA, Minogue PJ (2015) Potential invasiveness for Eucalyptus species in Florida. Invasive Plant Sci Manag 8:90–97. doi: 10.1614/IPSM-D-14-00030.1 CrossRefGoogle Scholar
  49. Marchante H, Morais M, Freitas H, Marchante E (2014) Guia prático para a identificação de Plantas Invasoras em Portugal. Imprensa da Universidade de Coimbra, CoimbraCrossRefGoogle Scholar
  50. McAlpine KG, Jesson LK (2008) Linking seed dispersal, germination and seedling recruitment in the invasive species Berberis darwinii (Darwin’s barberry). Plant Ecol 197:119–129. doi: 10.1007/s11258-007-9365-y CrossRefGoogle Scholar
  51. Mimura M, Barbour RC, Potts BM, Vaillancourt RE, Watanabe KN (2009) Comparison of contemporary mating patterns in continuous and fragmented Eucalyptus globulus native forests. Mol Ecol 18:4180–4192. doi: 10.1111/j.1365-294X.2009.04350.x CrossRefPubMedGoogle Scholar
  52. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vazquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740. doi: 10.1111/j.1461-0248.2006.00908.x CrossRefPubMedGoogle Scholar
  53. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547. doi: 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2 CrossRefGoogle Scholar
  54. Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag 57:239–251. doi: 10.1006/jema.1999.0297 CrossRefGoogle Scholar
  55. Porte A, Loustau D (1998) Variability of the photosynthetic characteristics of mature needles within the crown of a 25-year-old Pinus pinaster. Tree Physiol 18:223–232. doi: 10.1093/treephys/18.4.223 CrossRefPubMedGoogle Scholar
  56. Prider JN, Facelli JM (2004) Interactive effects of drought and shade on three arid zone chenopod shrubs with contrasting distributions in relation to tree canopies. Funct Ecol 18:67–76. doi: 10.1046/j.0269-8463.2004.00810.x CrossRefGoogle Scholar
  57. Procheş Ş, Wilson JRU, Richardson DM, Rejmánek M (2012) Native and naturalized range size in Pinus: relative importance of biogeography, introduction effort and species traits. Glob Ecol Biogeogr 21:513–523. doi: 10.1111/j.1466-8238.2011.00703.x CrossRefGoogle Scholar
  58. Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions. Springer-Verlag, Berlin, pp 97–125Google Scholar
  59. Quezel P (1977) Forests of the Mediterranean basin. Mediterranean forests and maquis: ecology, conservation and management. UNESCO, Paris, pp 9–33Google Scholar
  60. Rejmánek M, Richardson DM (2011) Eucalypts. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 203–209Google Scholar
  61. Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species - 2013 update of the global database. Divers Distrib 19:1093–1094. doi: 10.1111/ddi.12075 CrossRefGoogle Scholar
  62. Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: Van der Maarel E (ed) Vegetation ecology. Blackwell, Oxford, pp 332–355Google Scholar
  63. Reyes O, Casal M (1997) Germination of Pinus pinaster, P. radiata and Eucalyptus globulus in relation to the amount of ash produced in forest firesGoogle Scholar
  64. Reyes O, Casal M (2001) The influence of seed age on germinative response to the effects of fire in Pinus pinaster, Pinus radiata and Eucalyptus globulus. Ann For Sci 58:439–447. doi: 10.1051/forest:2001137 CrossRefGoogle Scholar
  65. Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26. doi: 10.1111/j.1523-1739.1998.96392.x CrossRefGoogle Scholar
  66. Richardson DM (2011) Forestry and Agroforestry. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 241–248Google Scholar
  67. Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431. doi: 10.1191/0309133306pp490pr CrossRefGoogle Scholar
  68. Richardson DM, Rejmánek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331. doi: 10.1111/j.1366-9516.2004.00096.x CrossRefGoogle Scholar
  69. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species - a global review. Divers Distrib 17:788–809. doi: 10.1111/j.1472-4642.2011.00782.x CrossRefGoogle Scholar
  70. Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the southern hemisphere: determinants of spread and invadability. J Biogeogr 21:511. doi: 10.2307/2845655 CrossRefGoogle Scholar
  71. Richardson DM, Hui C, Nuñez MA, Pauchard A (2014) Tree invasions: patterns, processes, challenges and opportunities. Biol Invasions 16:473–481. doi: 10.1007/s10530-013-0606-9 CrossRefGoogle Scholar
  72. Rodríguez-García E, Bravo F (2013) Plasticity in Pinus pinaster populations of diverse origins: comparative seedling responses to light and Nitrogen availability. For Ecol Manag 307:196–205. doi: 10.1016/j.foreco.2013.06.046 CrossRefGoogle Scholar
  73. Rodríguez-García E, Juez L, Guerra B, Bravo F (2007) Análisis de la regeneración natural de Pinus pinaster Ait. en los arenales de Almazán-Bayubas (Soria, España). Investig Agrar Sist y Recur For 16(1):25–38CrossRefGoogle Scholar
  74. Rodríguez-García E, Juez L, Bravo F (2010) Environmental influences on post-harvest natural regeneration of Pinus pinaster Ait. In Mediterranean forest stands submitted to the seed-tree selection method. Eur J For Res 129:1119–1128. doi: 10.1007/s10342-010-0399-7 CrossRefGoogle Scholar
  75. Rodríguez-García E, Bravo F, Spies TA (2011a) Effects of overstorey canopy, plant–plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. For Ecol Manag 262:244–251. doi: 10.1016/j.foreco.2011.03.029 CrossRefGoogle Scholar
  76. Rodríguez-García E, Gratzer G, Bravo F (2011b) Climatic variability and other site factor influences on natural regeneration of Pinus pinaster Ait. In Mediterranean forests. Ann For Sci 68:811–823. doi: 10.1007/s13595-011-0078-y CrossRefGoogle Scholar
  77. Rodríguez-García E, Ordóñez C, Bravo F (2011c) Effects of shrub and canopy cover on the relative growth rate of Pinus pinaster Ait. Seedlings of different sizes. Ann For Sci 68:337–346. doi: 10.1007/s13595-011-0039-5 CrossRefGoogle Scholar
  78. Ruano I, Pando V, Bravo F (2009) How do light and water influence Pinus pinaster Ait. Germination and early seedling development? For Ecol Manag 258:2647–2653. doi: 10.1016/j.foreco.2009.09.027 CrossRefGoogle Scholar
  79. Sabaté S, Gracia CA, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manag 162:23–37. doi: 10.1016/S0378-1127(02)00048-8 CrossRefGoogle Scholar
  80. Sánchez-Gómez D, Valladares F, Zavala MA (2006a) Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species. Tree Physiol 26:1425–1433CrossRefPubMedGoogle Scholar
  81. Sánchez-Gómez D, Zavala MA, Valladares F (2006b) Seedling survival responses to irradiance are differentially influenced by low-water availability in four tree species of the Iberian cool temperate–Mediterranean ecotone. Acta Oecol 30:322–332. doi: 10.1016/j.actao.2006.05.005 CrossRefGoogle Scholar
  82. Schwanz P, Polle A (2001) Differential stress responses of antioxidative systems to drought in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) grown under high CO2 concentrations. J Exp Bot 52:133–143. doi: 10.1093/jexbot/52.354.133 PubMedGoogle Scholar
  83. Silva FC, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004) Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiol 24:1165–1172. doi: 10.1093/treephys/24.10.1165 CrossRefGoogle Scholar
  84. Stoneman GL (1994) Ecology and physiology of establishment of eucalypt seedlings from seed: a review. Aust For 57:11–29CrossRefGoogle Scholar
  85. Tapias R, Gil L, Fuentes-Utrilla P, Pardos JA (2001) Canopy seed banks in Mediterranean pines of south-eastern Spain: a comparison between Pinus halepensis Mill., P. pinaster Ait., P. nigra Arn. and P. pinea L. J Ecol 89:629–638. doi: 10.1046/j.1365-2745.2001.00575.x CrossRefGoogle Scholar
  86. Wassie A, Sterck FJ, Teketay D, Bongers F (2009) Effects of livestock exclusion on tree regeneration in church forests of Ethiopia. For Ecol Manag 257:765–772. doi: 10.1016/j.foreco.2008.07.032 CrossRefGoogle Scholar
  87. Zar JH (1999) Biostatistical analysis. Prentice-Hall Inc, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Patrícia Fernandes
    • 1
    Email author
  • Cristina Máguas
    • 1
  • Otília Correia
    • 1
  1. 1.cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa, FCULLisbonPortugal

Personalised recommendations