Skip to main content

Advertisement

Log in

Aridity increases below-ground niche breadth in grass communities

Plant Ecology Aims and scope Submit manuscript

Abstract

Aridity is an important environmental filter in the assembly of plant communities worldwide. The extent to which root traits mediate responses to aridity, and how they are coordinated with leaf traits, remains unclear. Here, we measured variation in root tissue density (RTD), specific root length (SRL), specific leaf area (SLA), and seed size within and among thirty perennial grass communities distributed along an aridity gradient spanning 190–540 mm of climatic water deficit (potential minus actual evapotranspiration). We tested the hypotheses that traits exhibited coordinated variation (1) among species, as well as (2) among communities varying in aridity, and (3) functional diversity within communities declines with increasing aridity, consistent with the “stress-dominance” hypothesis. Across communities, SLA and RTD exhibited a coordinated response to aridity, shifting toward more conservative (lower SLA, higher RTD) functional strategies with increasing aridity. The response of SRL to aridity was more idiosyncratic and was independent of variation in SLA and RTD. Contrary to the stress-dominance hypothesis, the diversity of SRL values within communities increased with aridity, while none of the other traits exhibited significant diversity responses. These results are consistent with other studies that have found SRL to be independent of an SLA–RTD axis of functional variation and suggest that the dynamic nature of soil moisture in arid environments may facilitate a wider array of resource capture strategies associated with variation in SRL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler PB, Ellner SP, Levine JM (2010) Coexistence of perennial plants: an embarrassment of niches. Ecol Lett 13:1019–1029

    PubMed  Google Scholar 

  • Bradford JB, Schlaepfer DR, Lauenroth WK (2014) Ecohydrology of adjacent sagebrush and lodgepole pine ecosystems: the consequences of climate change and disturbance. Ecosystems 17:590–605

    Article  CAS  Google Scholar 

  • Butterfield BJ (2015) Environmental filtering increases in intensity at both ends of climatic gradients, though driven by different factors, across woody vegetation types of the southwest USA. Oikos 124:1374–1382

    Article  Google Scholar 

  • Butterfield BJ, Briggs JM (2011) Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165:477–487

    Article  PubMed  Google Scholar 

  • Butterfield BJ, Callaway RM (2013) A functional comparative approach to facilitation and its context dependence. Funct Ecol 27:907–917

    Article  Google Scholar 

  • Butterfield BJ, Suding KN (2013) Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. J Ecol 101:9–17

    Article  Google Scholar 

  • Butterfield BJ, Bradford JB, Armas C, Prieto I, Pugnaire FI (2016a) Does the stress-gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems. Funct Ecol 30:10–19

    Article  Google Scholar 

  • Butterfield BJ, Camhi AL, Rubin RL, Schwalm CR (2016b) Tradeoffs and compatibilities among ecosystem services: biological, physical and economic drivers of multifunctionality. Adv Ecol Res 54:207–243

    Article  Google Scholar 

  • Chesson P, Gebauer RLE, Schwinning S, Huntly N, Wiegand K, Ernest MSK, Sher A, Novoplansky A, Weltzin JF (2004) Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253

    Article  PubMed  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471

    Article  PubMed  Google Scholar 

  • Coyle JR, Halliday FW, Lopez BE, Palmquist KA, Wilfahrt PA, Hurlbert AH (2014) Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North America. Ecography 37:814–826

    Article  Google Scholar 

  • Craine JM, Wedin DA, Chapin FS, Reich PB (2003) Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecol 165:85–100

    Article  Google Scholar 

  • Fort F, Jouany C, Cruz P (2013) Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies. J Plant Ecol 6:211–219

    Article  Google Scholar 

  • Goldberg D, Novoplansky A (1997) On the relative importance of competition in unproductive environments. J Ecol 85:409–418

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Hernández EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in seedlings of mediterranean coexisting species. Plant Ecol 207:233–244

    Article  Google Scholar 

  • Kembel SW, Cahill JF (2011) Independent evolution of leaf and root traits within and among temperate grassland plant communities. PLoS ONE 6:e19992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580–582

    Article  CAS  PubMed  Google Scholar 

  • Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016) Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol 104:1299–1310

    Article  Google Scholar 

  • Laughlin DC (2014) The intrinsic dimensionality of plant traits and its relevance to community assembly. J Ecol 102:186–193

    Article  Google Scholar 

  • Liu G, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010) Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol 188:543–553

    Article  PubMed  Google Scholar 

  • Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J Clim 15:3237–3251

    Article  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • Milchunas DG, Lauenroth WK (2001) Belowground primary production by carbon isotope decay and long-term root biomass dynamics. Ecosystems 4:139–150

    Article  CAS  Google Scholar 

  • Mouillot D, Mason WHN, Dumay O, Wilson JB (2005) Functional regularity: a neglected aspect of functional diversity. Oecologia 142:353–359

    Article  PubMed  Google Scholar 

  • Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011) Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 6:e17476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NRCS: United States Department of Agriculture (1998) U.S. General Soil Map (STATSGO2). http://sdmdataaccess.nrcs.usda.gov

  • Palmquist KA, Schlaepfer DR, Bradford JB, Lauenroth WK (2016) Mid-latitude shrub steppe plant communities: climate change consequences for soil water resources. Ecology 97:2342–2354

    Article  PubMed  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Picon-Cochard C, Pilon R, Tarroux E, Pagès L, Robertson J, Dawson L (2012) Effect of species, root branching order and season on the root traits of 13 perennial grass species. Plant Soil 353:47–57

    Article  CAS  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Reich PB (2014) The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao K, Stokes A (2016) Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826

    Article  PubMed  Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

  • Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529

    Article  CAS  PubMed  Google Scholar 

  • Schlaepfer DR, Lauenroth WK, Bradford JB (2012) Ecohydrological niche of sagebrush ecosystems. Ecohydrology 5:453–466

    Article  Google Scholar 

  • Stephenson N (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25:855–870

    Article  Google Scholar 

  • Swenson NG, Enquist BJ, Pither J, Kerkhoff AJ, Boyle B, Weiser MD, Elser JJ, Fagan WF, Forero-Montaña J, Fyllas N, Kraft NJB, Lake JK, Moles AT, Patiño S, Phillips OL, Price CA, Reich PB, Quesada CA, Stegen JC, Valencia R, Wright IJ, Wright SJ, Andelman S, Jørgensen PM, Lacher TE Jr, Monteagudo A, Núñez-Vargas MP, Vasquez-Martínez R, Nolting KM (2012) The biogeography and filtering of woody plant functional diversity in North and South America. Glob Ecol Biogeogr 21:798–808

    Article  Google Scholar 

  • Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167:493–508

    Article  CAS  PubMed  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Wahl S, Ryser P (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytol 148:459–471

    Article  Google Scholar 

  • Weiher E, Clarke GDP, Keddy PA (1998) Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81:309–322

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kaitlyn Toledo, Jonathan Paklaian, and Kyle Doherty for assistance with field work; and Julie Wachara, Austin Rueda, and Kelsey Blodgett for assistance with lab work. This research was supported in part by the US Geological Survey Ecosystems Mission Area. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Butterfield.

Additional information

Communicated by William E. Rogers.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butterfield, B.J., Bradford, J.B., Munson, S.M. et al. Aridity increases below-ground niche breadth in grass communities. Plant Ecol 218, 385–394 (2017). https://doi.org/10.1007/s11258-016-0696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0696-4

Keywords

Navigation