Skip to main content
Log in

Does fire affect the temporal pattern of trophic resource supply to pollinators and seed-dispersing frugivores in a Brazilian savanna community?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In tropical savannas, such as the campo cerrado in Brazil, fire plays an important role, affecting plant species’ life history. Since fire has the potential to modify the structure of savanna communities as a whole, it is expected that it may influence the resource supply for mutualists by altering the pattern of investment in sexual reproduction. We used an experimental approach to test if fire alters trophic resource availability to pollinators (nectar, pollen, and oil) and seed-dispersing frugivores (fleshy fruits) by altering the seasonality of reproductive phenophases in a savanna community. We sampled all individuals of 60 species that were common to both control and experimental fire treatments. Each month we recorded the number of reproductive individuals to test whether fire affected the temporal resource offered by the plant assemblage as a whole, and by each specific plant group supporting distinct groups of pollinators and seed-dispersing frugivores. We noticed that fire advanced the nectar, pollen, and fleshy fruit offered by the whole assemblage. Additionally, fire affected the temporal pattern of nectar and pollen available to various pollinator groups, and of fleshy fruits available to all seed-dispersing frugivores. In general, fire seems to have a neutral or even a positive effect on resource availability to mutualists. Nevertheless, there were differences in the availability of the resource utilized by each guild of mutualists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinelli C, Lund U (2013) R package ‘circular’: Circular Statistics (version 0.4-7). https://r-forge.r-project.org/projects/circular/

  • Albrecht J, Bohle V, Berens DG, Jaroszewicz B, Selva N, Farwig N (2015) Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. J Ecol 103:526–536. doi:10.1111/1365-2745.12375

    Article  Google Scholar 

  • Allaby M (2010) Dictionary of ecology. Oxford University Press, New York

    Google Scholar 

  • Auld TD (1986) Population dynamics of the shrub Acacia suaveolens (Sm.) Willd.: fire and the transition to seedlings. Aust J Ecol 11(4):373–385

    Article  Google Scholar 

  • Barlow J, Peres CA (2006) Consequences of fire disturbance for ecosystem structure and biodiversity in Amazonian forests. Chicago University Press, Chicago

    Google Scholar 

  • Batalha MA (2011) O cerrado não é um bioma. Biota Neotrop 11(1):1–4

    Article  Google Scholar 

  • Batalha MA, Mantovani W (2000) Reproductive phenological patterns of cerrado plant species at the Pé-de-Gigante Reserve (Santa Rita do Passa Quatro, SP, Brazil): a comparison between and wood floras. Rev Bras Biol 60:129–145. doi:10.1590/S0034-71082000000100016

    Article  CAS  PubMed  Google Scholar 

  • Batalha MA, Martins FR (2004) Reproductive phenology of the cerrado plant community in Emas National Park (central Brazil). Aust J Bot 52:149–161. doi:10.1071/BT030980067-1924/04/020149

    Article  Google Scholar 

  • Bawa KS (1990) Plant-pollinator interactions in Tropical Rain Forests. Annu Rev Ecol Syst 21:399–422

    Article  Google Scholar 

  • Birch LC (1957) The meanings of competition. Am Nat 91:5–18

    Article  Google Scholar 

  • Bond WJ (1994) Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philos Trans R Soc Lond B Biol Sci 344(1307):83–90. doi:10.1098/rstb.1994.0055

    Article  Google Scholar 

  • Bond WJ (2014) Fires in the Cenozoic: a late flowering of flammable ecosystems. Front Plant Sci. doi:10.3389/fpls.2014.00749

    PubMed  Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Springer, Netherlands

    Book  Google Scholar 

  • Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the Earth system. Science 324(5926):481–484. doi:10.1126/science.1163886

    Article  CAS  PubMed  Google Scholar 

  • Bowman DM, Perry GL, Higgins SI, Johnson CN, Fuhlendorf SD, Murphy BP (2016) Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos Trans R Soc B 371(1696):20150169. doi:10.1098/rstb.2015.0169

    Article  Google Scholar 

  • Brando PM, Durigan G (2004) Changes in cerrado vegetation after disturbance by frost (São Paulo State, Brazil). Plant Ecol 175:205–215. doi:10.1007/s11258-005-0014-z

    Article  Google Scholar 

  • Brown J, York A, Christie F, McCarthy M (2016a) Effects of fire on pollinators and pollination. J Appl Ecol. doi:10.1111/1365-2664.12670

    Google Scholar 

  • Brown J, York A, Christie F (2016b) Fire effects on pollination in a sexually deceptive orchid. Int J Wildl Fire 25(8):888–895. doi:10.1071/WF15172

    Article  Google Scholar 

  • Causley CL, Fowler WM, Lamont BB, He T (2016) Fitness benefits of serotiny in fire-and drought-prone environments. Plant Ecol 217(6):773–779. doi:10.1007/s11258-015-0552-y

    Article  Google Scholar 

  • Chapin FS III, Matson OA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Coates F, Duncan M (2009) Demographic variation between populations of Caladenia orientalis—a fire-managed threatened orchid. Aust J Bot 57:326–339. doi:10.1071/BT08144

    Article  Google Scholar 

  • Coates F, Lunt ID, Tremblay RL (2006) Effects of disturbance on population dynamics of the threatened orchid Prasophyllum correctum D.L. Jones and implications for grassland management in south-eastern Australia. Biol Conserv 129:59–69. doi:10.1016/j.biocon.2005.06.037

    Article  Google Scholar 

  • Coutinho LM (1982) Ecological effects of fire in Brazilian Cerrado. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer, Berlin, pp 273–291

    Chapter  Google Scholar 

  • Coutinho LM (1990) Fire in the ecology of the Brazilian cerrado. In: Goldammer JG (ed) Fire in the tropical biota: ecosystem processes and global challenges. Springer, Berlin, pp 82–105

    Chapter  Google Scholar 

  • Cunha AR, Martins D (2009) Classificação climática para os municípios de Botucatu e São Manuel, SP. Irriga Botucatu. 14:1–11. doi:10.15809/irriga.2009v14n1p01

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fleming TH, Kress WJ (2013) The ornaments of life: coevolution and conservation in the tropics. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Ford HA (1979) Interspecific competition in Australian honeyeaters—depletion of common resources. Aust J Ecol 4(2):145–164

    Article  Google Scholar 

  • Forni-Martins ER, Marques MCM, Lemes MR (1998) Biologia floral e reprodução de Solanum paniculatum L. (Solanaceae) no estado de São Paulo, Brasil. Rev Bras Bot 21(2):117–124. doi:10.1590/S0100-84041998000200002

    Article  Google Scholar 

  • Geerts S, Malherbe SD, Pauw A (2012) Reduced flower visitation by nectar-feeding birds in response to fire in Cape fynbos vegetation, South Africa. J Ornithol 153:297–301. doi:10.1007/s10336-011-0743-9

    Article  Google Scholar 

  • Goldammer JG, Mutch RW (2001) Global Forest Fire Assessment. FAO Forest Resources Assessment Programme. Working Paper 59, FAO, Rome

  • Google Earth 7.1.2.2041 (2016). Santa Barbara Ecological Statiton, Águas de Santa Bárbara municipality, SP, Brazil. 22°48′38.81″S 49°11′58.10″O, 1.91 Km. No layer. CNES/Astrium (Accessed 10 Sept 2016)

  • Gottsberger G (1988) Comments on flower evolution and beetle pollination in the genera Annona and Rollinia (Annonaceae). Plant Syst Evol 167(3–4):189–194. doi:10.1007/BF00936405

    Google Scholar 

  • Gottsberger G, Silberbauer-Gottsberger I (2006) Life in the Cerrado: a South American Tropical Seasonal Vegetation, vol 2. Reta Verlag, Ulm

    Google Scholar 

  • Goulson D, Sparrow KR (2009) Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J Insect Conserv 13(2):177–181

    Article  Google Scholar 

  • Hammill KA, Bradstock RA (2006) Remote sensing of fire severity in the Blue Mountains: influence of vegetation type and inferring fire intensity. Int J Wildland Fire 15(2):213–226. doi:10.1071/WF05051

    Article  Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A, Bjerknes A, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195. doi:10.1111/j.1461-0248.2008.01269.x

    Article  PubMed  Google Scholar 

  • Henderson PA, Southwood TRE (2016) Ecological methods. Wiley, Chichester

    Google Scholar 

  • Higgins SI, Bond WJ, Trollope WS (2000) Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna. J Ecol 88(2):213–229. doi:10.1046/j.1365-2745.2000.00435.x

    Article  Google Scholar 

  • Hoffmann WA (1998) Post-burn reproduction of woody plants in a Neotropical savanna, the relative importance of sexual and vegetative reproduction. J Appl Ecol 35:422–433. doi:10.1046/j.1365-2664.1998.00321.x

    Article  Google Scholar 

  • Hoffmann WA, Schroeder W, Jackson RB (2002) Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna. Geophys Res Lett 22:91–94. doi:10.1029/2002GL015424

    Article  Google Scholar 

  • Keane RR, Cary GJ, Davies ID, Flannigan MD, Gardner RH, Lavorel S, Lenihan JM, Li C, Rupp TS (2007) Understanding global fire dynamics by classifying and comparing spatial models of vegetation and fire. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer Science & Business Media, Berlin

    Google Scholar 

  • Kearns CA, Inouye DW (1997) Pollinators, flowering plants, and conservation biology. Bioscience 47(5):297–307. doi:10.2307/1313191

    Article  Google Scholar 

  • Lamont BB, Downes KS (2011) Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecol 212:2111–2125. doi:10.1007/s11258-011-9987-y

    Article  Google Scholar 

  • Lamont BB, Runciman HV (1993) Fire may stimulate flowering, branching, seed production and seedling establishment in two kangaroo paws (Haemodoraceae). J Appl Ecol 30:256–264. doi:10.2307/2404627

    Article  Google Scholar 

  • Lavorel S, Flannigan MD, Lambin EF, Scholes MC (2007) Vulnerability of land systems to fire: interactions among humans, climate, the atmosphere, and ecosystems. Mitig Adapt Strat Glob Change 12(1):33–53. doi:10.1007/s11027-006-9046-5

    Article  Google Scholar 

  • Lemon J (2006) Plotrix: a package in the red light district of R. R-News 6(4):8–12

    Google Scholar 

  • Machado SR, Paleari LM, Paiva ÉAS, Rodrigues TM (2015) Colleters on the Inflorescence Axis of Croton glandulosus (Euphorbiaceae): structural and functional characterization. Int J Plant Sci 176:86–93. doi:10.1086/678469

    Article  Google Scholar 

  • Maloof JE, Inouye DW (2000) Are nectar robbers cheaters or mutualists? Ecology 10:2651–2661. doi:10.2307/177331

    Article  Google Scholar 

  • Marod D, Kutintara U, Tanaka H, Takashizuka T (2002) The effects of drought and fire on seed and seedling dynamics in a tropical seasonal forest in Thailand. Plant Ecol 161:41–57. doi:10.1023/A:1020372401313

    Article  Google Scholar 

  • Mello MA, Bezerra EL, Machado IC (2013) Functional roles of Centridini oil bees and Malpighiaceae oil flowers in biome-wide pollination networks. Biotropica 45(1):45–53. doi:10.1111/j.1744-7429.2012.00899.x

    Article  Google Scholar 

  • Melo ACG, Durigan G (2011) Estação Ecológica de Santa Bárbara: Plano de manejo. Secretaria do Meio Ambiente do Estado de São Paulo

  • Memmott J, Craze G, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717. doi:10.1111/j.1461-0248.2007.01061.x

    Article  PubMed  Google Scholar 

  • Menz MHH, Phillips RD, Winfree R, Kremen C, Aizen MA, Johnson D, Dixon KW (2011) Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. Trends Plant Sci 16:4–12. doi:10.1016/j.tplants.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  • Miranda HS, Bustamante MMC, Miranda AC (2002) The fire factor. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savana. Columbia University Press, New York, pp 51–68

    Google Scholar 

  • Moore CM, Vander Wall SB (2015) Scatter-hoarding rodents disperse seeds to safe sites in a fire-prone ecosystem. Plant Ecol 216(8):1137–1153. doi:10.1007/s11258-015-0497-1

    Article  Google Scholar 

  • Morellato LPC, Alberti LF, Hudson IL (2010) Applications of circular statistics in plant phenology: a case studies approach. In: Hudson IL, Keatley MR (eds) Phenological research: methods for environmental and climate change analysis. Springer, Dordrecht, pp 339–359

    Chapter  Google Scholar 

  • Morellato LPC, Alberton B, Alvarado ST, Borges B, Buisson E, Camargo MGG, Cancian LF, Carstensen DW, Escobar DFE, Leite PTP, Mendoza I, Rocha NMWB, Soares NC, Silva TSF, Staggemeier VG, Streher AS, Vargas BC, Peres CA (2016) Linking plant phenology to conservation biology. Biol Conserv 195:60–72. doi:10.1016/j.biocon.2015.12.033

    Article  Google Scholar 

  • Munhoz CBR, Felfili JM (2007) Reproductive phenology of an herbaceous-subshrub layer of a Savannah (Campo Sujo) in the Cerrado Biosphere Reserve I, Brazil. Braz J Biol 67:299–307. doi:10.1590/S1519-69842007000200015

    Article  CAS  PubMed  Google Scholar 

  • Ne’eman G, Dafni A, Potts SG (2000) The effect of fire on flower visitation rate and fruit set in four core-species in east Mediterranean scrubland. Plant Ecol 146(1):97–104. doi:10.1023/A:1009815318590

    Article  Google Scholar 

  • Neves DRM, Damasceno-Junior GA (2011) Post-fire phenology in a campo sujo vegetation in the Urucum plateau, Mato Grosso do Sul, Brazil. Braz J Biol 71:881–888. doi:10.1590/S1519-69842011000500009

    Article  Google Scholar 

  • Oliveira HFM, Aguiar LMS (2015) The response of bats (Mammalia: chiroptera) to an incidental fire on a gallery forest at a Neotropical savanna. Biota Neotrop 15(4):e0091. doi:10.1590/1676-0611-BN-2015-0091

    Article  Google Scholar 

  • Oliveira-Filho AT, Ratter JA (2002) Vegetation Physiognomies and woody flora of the cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savana. Columbia University Press, New York, pp 91–120

    Chapter  Google Scholar 

  • Parr CL, Andersen AN, Chastagnol C, Duffaud C (2007) Savanna fires increase rates and distances of seed dispersal by ants. Oecologia 151(1):33–41. doi:10.1007/s00442-006-0570-5

    Article  CAS  PubMed  Google Scholar 

  • Pausas JG, Bradstock RA, Keith DA, Keeley JE (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85(4):1085–1100. doi:10.1890/02-4094

    Article  Google Scholar 

  • Peñuelas J, Filella I (2001) Responses to a warming world. Science 294:793. doi:10.1126/science.1066860

    Article  PubMed  Google Scholar 

  • Peterson NB, Parker VT (2016) Dispersal by rodent caching increases seed survival in multiple ways in canopy-fire ecosystems. Ecol Evol 6(13):4298–4306. doi:10.1002/ece3.2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pivello VR (2008) Os cerrados e o fogo. ComCiência 104:1

    Google Scholar 

  • Ponisio LC, Wilkin K, M’Gonigle LK, Kulhanek K, Cook L, Thorp R, Griswold T, Kremen C (2016) Pyrodiversity begets plant-pollinator community diversity. Glob Change Biol 22:1794–1808. doi:10.1111/gcb.13236

    Article  Google Scholar 

  • Potts SG, Vulliamy B, Dafni A, Ne’eman G, O’Toole C, Roberts S, Willmer P (2003) Response of plant-pollinator communities to fire: changes in diversity, abundance and floral reward structure. Oikos 101:103–112. doi:10.1034/j.1600-0706.2003.12186.x

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353. doi:10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  • Pyne SJ (2001) Fire: a brief history. University of Washington Press, Seattle

    Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.R-project.org. Accessed 15 Dec 2016

  • Rafferty NE, CaraDonna PJ, Bronstein JL (2015) Phenological shifts and the fate of mutualisms. Oikos 124(1):14–21. doi:10.1111/oik.01523

    Article  PubMed  Google Scholar 

  • Rost J, Jardel-Peláez EJ, Bas JM, Pons P, Loera J, Vargas-Jaramillo S, Santana E (2015) The role of frugivorous birds and bats in the colonization of cloud forest plant species in burned areas in western Mexico. Anim Biodivers Conserv 38(2):175–185

    Google Scholar 

  • Smith JK, ed. (2000) Wildland fire in ecosystems: effects of fire on fauna. Gen. Tech. Rep. RMRS-GTR-42-vol. 1. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, 83 pp

  • Solga MJ, Harmon JP, Ganguli AC (2014) Timing is everything: an overview of phenological changes to plants and their pollinators. Nat Area J. 34:227–234. doi:10.3375/043.034.0213

    Article  Google Scholar 

  • Van der Pijl L (1969) Principles of dispersal in higher plants. Springer, Berlin

    Book  Google Scholar 

  • Van Nuland ME, Haag EN, Bryant JA, Read QD, Klein RN, Douglas MJ, Gorman CE, Greenwell TD, Busby MW, Collins J (2013) Fire promotes pollinator visitation: implications for ameliorating declines of pollination services. PLoS ONE 8(11):e79853. doi:10.1371/journal.pone.0079853

    Article  PubMed  PubMed Central  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77(4):1043–1060. doi:10.2307/2265575

    Article  Google Scholar 

  • Williams RJ, Myers BA, Eamus D, Duff GA (1999) Reproductive phenology of woody species in North Australian Tropical savanna. Biotropica 31:626–636. doi:10.1111/j.1744-7429.1999.tb00411.x

    Article  Google Scholar 

  • Willson M, Traveset A (2000) The Ecology of Seed Dispersal. In: Fenner M (ed) Seeds: The ecology of regeneration in plant communities, 2nd edn. CAB International, Wallingford, pp 85–110

    Chapter  Google Scholar 

  • Wright BR, Latz PK, Zuur AF (2016) Fire severity mediates seedling recruitment patterns in slender mulga (Acacia aptaneura), a fire-sensitive Australian desert shrub with heat-stimulated germination. Plant Ecol 217:789–800. doi:10.1007/s11258-015-0550-0

    Article  Google Scholar 

  • Zar JH (2010) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Giselda Durigan and Ms. Geissianny Bessão de Assis for designing the fire experiment, for allowing us to use their plots in our study, and for identifying numerous plant species. We also thank the ‘Instituto Florestal de São Paulo’ and the Santa Barbara Ecological Station staff for their assistance and Heloíza Cassola for field assistance and species’ identification. MAB would like to thank the National Council for Scientific and Technological Development for the productivity grant (CNPq, Grant 305912/2013-5). We thank the anonymous reviewer, Julian Brown and Michael Lawes for the important contributions to the manuscript during the revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elza Guimarães.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Michael Lawes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Supplementary material 2 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunes, P., Alves, V.N., Valentin-Silva, A. et al. Does fire affect the temporal pattern of trophic resource supply to pollinators and seed-dispersing frugivores in a Brazilian savanna community?. Plant Ecol 218, 345–357 (2017). https://doi.org/10.1007/s11258-016-0695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0695-5

Keywords

Navigation