Plant Ecology

, Volume 218, Issue 2, pp 225–239 | Cite as

Unraveling the ecosystem functions in the Amazonia–Cerrado transition: evidence of hyperdynamic nutrient cycling

  • Bianca de Oliveira
  • Ben Hur Marimon Junior
  • Henrique A. Mews
  • Marco Bruno X. Valadão
  • Beatriz S. Marimon


The contact between savanna and forest in the Amazonia–Cerrado transition zone is characterized by the hyperdynamics of the vegetation (recruitment vs. mortality). However, the related nutrient dynamics under these conditions are not well understood. We determined for the first time the biogeochemical cycles of the vegetation in the zone of transition estimating the litterfall, nutrient input, decomposition rates, and nutrient release in cerradão and cerrado plots. We examine the hypothesis that nutrient cycling is strongly associated with the vegetation dynamics. The litterfall was sampled in 30 traps placed within 1-ha vegetation plots for 2 years. The release of nutrients from the litterfall back to the soil was also estimated using decomposition bags in the two areas. The decomposition rates did not vary between areas, although in the cerradão the input of total biomass (9.27 Mg ha−1 year−1) and total nutrients (219.17 kg ha−1 year−1), the decomposition of the total biomass, and the cycling of most nutrients through litterfall and decomposition were at least twice higher than in the cerrado. These results confirmed the hypothesis concerning the differences between vegetation types in nutrient cycling, suggesting for the first time that the hyperdynamics observed in both vegetations were also reflected in the biogeochemical cycle, particularly in the cerradão. Thus, it is likely that the rapid and effective cycling of nutrients observed in the cerradão might be a key condition guaranteeing the ability of the cerradão to colonize new areas previously occupied by the typical cerrado.


Nutrient cycling Leaf litter Cerrado Ecosystem functions Hyperdynamic 



The authors would like to thank the UNEMAT Plant Ecology Laboratory at Nova Xavantina for assistance in the field. This study was financially supported through the following projects: PELD-CNPq403725/2012-7 (UNEMAT), RAINFOR (University of Leeds), GEM (University of Oxford), and CNPq-PPBio (457602/2012-0) (UNEMAT). The authors would also like to thank PROCAD UnB/UNEMAT for financial support; the Coordination for Higher Education Training (CAPES) for the concession of a graduate stipend to Bianca de Oliveira; and the Brazilian National Council for Scientific and Technological Development (CNPq) for research productivity grants (PQ-2) to B.H. Marimon-Junior and B.S. Marimon.


  1. Batermann SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:227. doi: 10.1038/nature12525 Google Scholar
  2. Bocock KL, Gilbert OJW (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 2:179–185. doi: 10.1007/BF01398924 CrossRefGoogle Scholar
  3. Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538. doi: 10.1111/j.1469-8137.2004.01252.x CrossRefPubMedGoogle Scholar
  4. Bonfai DS, Bowman DMJS (2006) Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia. Biol Cons 131:553–565CrossRefGoogle Scholar
  5. Bonini I, Rodrigues C, Dallacort R, Marimon-Junior BH, Carvalho MAC (2014) Rainfall and deforestation in the municipality of Colíder, Southern Amazon. Rev Bras Meteor 29:483–493CrossRefGoogle Scholar
  6. Bowman DMJS, Murphy PB, Bonfai DS (2010) Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics? Landsc Ecol 25:1247–1260CrossRefGoogle Scholar
  7. Cárdenas ML, Gosling WD, Sherlock SC, Poole I, Pennington TR, Mothes P (2011) The response of vegetation on the Andean Flank in Western Amazonia to pleistocene climate change. Science 25:1055–1058. doi: 10.1126/science.1197947 CrossRefGoogle Scholar
  8. Castro AWV, Farias Neto JT, Cavalcante ES (1998) Efeito do espaçamento na produtividade de biomassa de taxi-branco (Sclerolobium paniculatum Vogel). Acta Amaz 28:141–146. doi: 10.1590/1809-43921998282146 CrossRefGoogle Scholar
  9. Cianciaruso MV, Pires JSR, Delliti WBC, Pereira SEFL (2006) Produção de serapilheira e decomposição do material foliar em um cerradão na Estação Ecológica de Jataí, município de Luiz Antônio, SP, Brasil. Acta Bot Bras 20:49–59. doi: 10.1590/S0102-33062006000100006 CrossRefGoogle Scholar
  10. Constantinides M, Fownes JH (1994) Nitrogen mineralization from leaves and litter of tropical plants: relationship to nitrogen, lignin and soluble polyphenol concentrations. Soil Biol Biochem 26:49–55. doi: 10.1016/0038-0717(94)90194-5 CrossRefGoogle Scholar
  11. Eisenhauer N, Reich PB, Isbell F (2012) Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 93:2227–2240CrossRefPubMedGoogle Scholar
  12. Embrapa (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa, BrasíliaGoogle Scholar
  13. Franczak DD, Marimon BS, Marimon-Junior BH, Mews HA, Maracahipes L, Oliveira EA (2011) Changes in the structure of a savanna forest over a six-year period in the Amazon-Cerrado transition, Mato Grosso state, Brazil. Rodriguésia 62:425–436CrossRefGoogle Scholar
  14. Franken M, Irmler V, Klinge H (1979) Litterfall in inundation, riverine and terra firme Forest of central Amazonia. Tropical Ecology 20:225–235. doi: 10.1007/BF00176910 Google Scholar
  15. Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob Ecol Biogeogr 8:223–241. doi: 10.1046/j.1466-822X.1999.00142.x CrossRefGoogle Scholar
  16. Gama-Rodrigues AC, Barros NF, Santos ML (2003) Decomposição e liberação de nutrientes do folhedo de espécies florestais nativas em plantios puros e mistos no sudeste da Bahia. R Bras Ci Solo 27:1021–1031. doi: 10.1590/S0100-06832003000600006 CrossRefGoogle Scholar
  17. Gloor MRJW, Brienen D, Galbraith TR et al (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1–5. doi: 10.1002/grl.50377 CrossRefGoogle Scholar
  18. Hammer ØY, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for Education and data analysis. Palaeontol Electron 4:1–8Google Scholar
  19. Haridasan M (1992) Observations on soils, foliar nutrient concentration and floristic composition of cerrado sensu stricto and cerradão communities in central Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-Savanna Boundaries. Chapman & Hall Publishing, London, pp 171–184Google Scholar
  20. Haridasan M (2005) Competição por nutrientes em espécies arbóreas do cerrado. In: Scariot A, Felfili JM, Souza-Silva JC (eds) Cerrado: Ecologia. Biodiversidade e Conservação, Ministério do Meio Ambiente, Brasília, pp 169–178Google Scholar
  21. Isbell F, Calcagno V, Hector A et al (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–203CrossRefPubMedGoogle Scholar
  22. Jacobson TKB, Bustamante MMC (2014) Leaf litter decomposition and nutrient release under nitrogen, phosphorus and nitrogen plus phosphorus additions in a savanna in Central Brazil. In: Sutton MA, Mason KE, Sheppard LJ, Sverdrup H, Haeuber R, Hicks WK (eds) Nitrogen deposition, critical loads and biodiversity, 1st edn. Springer, New York, pp 155–163CrossRefGoogle Scholar
  23. Kauffman JB, Cummings DL, Ward DE (1994) Relationships of fire, biomass and nutritional dynamics along vegetation gradient in the Brazilian Cerrado. J Ecol 82:519–531CrossRefGoogle Scholar
  24. Klinge H, Rodrigues WA (1968) Litter production in an area of Amazonian terra firme forest. Part I. Litter fall, organic carbon and total nitrogen contents of litter. Amazoniana 1:287–302Google Scholar
  25. Lehmann CER, Archibald SA, Hoffmann WA, Bond JM (2011) Deciphering the distribution of the savanna biome. New Phytol 191:197–209CrossRefPubMedGoogle Scholar
  26. Lloyd J, Domingues TF, Schrodt F et al (2015) Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosci Discuss 12:7879–7977. doi: 10.5194/bgd-12-7879-2015 CrossRefGoogle Scholar
  27. Marimon BS, Lima ES, Duarte TG, Chieregatto LC, Ratter JA (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil, IV an analysis of the Cerrado-Amazonian forest ecotone. Edinburgh J Bot 63:323–341. doi: 10.1017/S0960428606000576 CrossRefGoogle Scholar
  28. Marimon BS, Felfili JM, Lima ES, Duarte WMG, Marimon-Junior BH (2010) Environmental determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. Acta Amaz 40:107–118CrossRefGoogle Scholar
  29. Marimon BS, Marimon-Junior BH, Feldpausch TR et al (2014) Disequilibrium and hyperdynamic tree turnover at the forest-savanna transition zone in southern Amazonia. Plant Ecol Divers 7:281–292. doi: 10.1080/17550874.2013.818072 CrossRefGoogle Scholar
  30. Marimon-Junior BH (2007) Relação entre diversidade arbórea e Aspectos do ciclo biogeoquímico de uma Floresta Monodominate de Brosimum rubescens Taub. e uma Floresta Mista no Leste Mato-Grossense. Tese, Universidade de BrasíliaGoogle Scholar
  31. Marimon-Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926CrossRefGoogle Scholar
  32. Martins SV, Rodrigues RR (1999) Produção de serapilheira em clareiras de uma floresta estacional semidecidual no Município de Campinas, SP. Rev Bras Bot 22:405–412. doi: 10.1590/S0100-84041999000300009 Google Scholar
  33. Mayle FE, Burbridge R, Killeen IJ (2000) Millennial-Scale dynamics of Southern Amazonian Rain Forests. Science 290:2291–2294. doi: 10.1007/978-90-481-2672-9_12 CrossRefPubMedGoogle Scholar
  34. Mitchard ETA, Saatchi SS, Gerard FF, Lewis SL, Meir P (2009) Measuring woody encroachment along a forest-savanna boundary in Central Africa. Earth Interact 13:1–29CrossRefGoogle Scholar
  35. Morandi PS, Marimon BS, Oliveira EA, Reis SM, Valadão MBX, Forsthofer M, Passos FB, Marimon-Junior BH (2016) Vegetation succession in the Cerrado/Amazonian forest transition zone of Mato Grosso State, Brazil. Edinb J Bot 73:83–93. doi: 10.1017/S096042861500027X CrossRefGoogle Scholar
  36. Nardoto GB, Bustamente MMC (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesqui Agropec Bras 38:955–962CrossRefGoogle Scholar
  37. Nardoto GB, Bustamante MMC, Pinto AS, Klink CA (2006) Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. J Trop Ecol 22:191–201CrossRefGoogle Scholar
  38. Nepstad DC, Stickler CM, Soares-Filho B, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc Lond B Biol Sci 363:1737–1746. doi: 10.1098/rstb.2007.0036 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Oliveira Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savanna, 1st edn. Columbia University Press, New York, pp 91–120CrossRefGoogle Scholar
  40. Pagano SN, Durigan G (2000) Aspectos da ciclagem de nutrientes em Matas Ciliares do oeste do Estado de São Paulo, Brasil. In: Rodrigues RR, Leitão Filho HF (eds) Matas ciliares: conservação e recuperação, 1st edn. Fapesp, São Paulo, pp 109–123Google Scholar
  41. Parrón L (2004) Relação entre aspectos do ciclo biogeoquímico e gradiente topográfico na Mata de Galeria do Córrego Pitoco (DF). PhD Thesis, Universidade de BrasíliaGoogle Scholar
  42. Parron LM, Bustamante MMC, Markewitz D (2011) Fluxes of nitrogen and phosphorus in a gallery forest in the cerrado of central Brazil. Biogeochemistry 105:89–104CrossRefGoogle Scholar
  43. Pellegrini AFA, Hoffmann WA, Franco AC (2014) Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95:342–352CrossRefPubMedGoogle Scholar
  44. Peres JRR, Suhet AR, Vargas MAT, Drozdowics A (1983) Litter production in areas of Brazilian “cerrados”. Pesqui Agropecu Bras 18:1037–1043Google Scholar
  45. Ratter JA (1992) Transitions between cerrado and forest vegetation in Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries. Chapman & Hall, London, pp 417–442Google Scholar
  46. Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of the northeastern Mato Grosso. I. The woody vegetation types of the Xavantina-Cachimbo Expedition área. Philos Trans R Soc Lond 266:449–492CrossRefGoogle Scholar
  47. Schwartz D, Foresta H, Mariotti A, Balesdent J, Massimba JP, Girardin C (1996) Present dynamics of the savanna-forest boundary in the Congolese Mayombe: a pedological, botanical and isotopic (13C and 14C) study. Oecologia 106:516–524CrossRefGoogle Scholar
  48. Silva CJ, Sanches L, Bleich ME, Lobo FA, Nogueira JS (2007) Produção de serapilheira no Cerrado e Floresta de Transição Amazônia-Cerrado do Centro-Oeste Brasileiro. Acta Amaz 37:543–548. doi: 10.1590/S0044-59672007000400009 CrossRefGoogle Scholar
  49. Silva FAM, Assad ED, Evangelista BA (2008) Caracterização Climática do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JP (eds) Cerrado: Ecologia e Flora, 1st edn. Embrapa, Planaltina, pp 69–88Google Scholar
  50. Silva CJ, Lobo FA, Bleich ME, Sanches L (2009) Contribuição de folhas na formação da serapilheira e no retorno de nutrientes em floresta de transição no norte de Mato Grosso. Acta Amaz 39:591–600CrossRefGoogle Scholar
  51. Silva LCR, Hoffmann WA, Rossatto DR, Haridasan M, Franco AC, Horwath WR (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842CrossRefGoogle Scholar
  52. Staver CA, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232CrossRefPubMedGoogle Scholar
  53. Sundarapandian SM, Swamy PS (1999) Litter production and leaf-litter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghats, India. For Ecol Manage 123:231–244. doi: 10.1016/S0378-1127(99)00062-6 CrossRefGoogle Scholar
  54. Tan KH (1996) Soil sampling, preparation, and analysis. Marcell, New YorkGoogle Scholar
  55. Valadão MBX, Marimon-Junior BH, Oliveira B, Winck N, Souza MGR, Marimon BS (2016) Biomass hyperdynamics as a key modulator of forest self-maintenance in a dystrophic soil in the Amazonia-Cerrado transition. Sci For 4:475–485. doi: 10.18671/scifor.v44n110.20 Google Scholar
  56. Venter FJ, Govender N (2012) A geomorphic and soil description of the long term fire experiment in the Kruger National Park. South Africa. Koedoe. doi: 10.4102/koedoe.v54i1.1037 Google Scholar
  57. Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Ann Rev Ecol Syst 17:137–167. doi: 10.1146/ CrossRefGoogle Scholar
  58. Werneck MS, Pedralli G, Gieseke LF (2001) Produção de serrapilheira em três trechos de uma floresta semidecídua com diferentes graus de perturbação na Estação Ecológica do Tripuí, Ouro Preto. Rev Bras Bot 24:195–198CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bianca de Oliveira
    • 1
  • Ben Hur Marimon Junior
    • 1
  • Henrique A. Mews
    • 1
  • Marco Bruno X. Valadão
    • 1
  • Beatriz S. Marimon
    • 1
  1. 1.Programa de Pós-Graduação em Ecologia e ConservaçãoUniversidade do Estado de Mato Grosso - UNEMATNova XavantinaBrazil

Personalised recommendations