Plant Ecology

, Volume 217, Issue 12, pp 1545–1552

The role of pollination drops in animal pollination in the Mediterranean gymnosperm Ephedra fragilis (Gnetales)

  • C. Celedón-Neghme
  • L. Santamaría
  • M. González-Teuber
Article

Abstract

The pollination drop (PD) is a sweet secretion produced by female cones of many gymnosperms whose main function is associated with the capture and transport of pollen to the nucellar surface of the ovule. Due to its high sugar content, PDs appear to be highly suitable for the attraction of animals that might act as potential pollinators for gymnosperms. In the present study, we evaluated the attraction of animals to female and male PDs (sugar-rich rewards) in plants of the Mediterranean shrub Ephedra fragilis in addition to their contribution to plant fitness. Animal exclusion experiments were conducted in Sa Dragonera Islet Natural Park (Western Mediterranean, Spain). In addition, a link between PD investment (PD concentration) and plant fitness was evaluated on plants of E. fragilis. Lizards and insects were the principal visitors to PDs offered by E. fragilis plants. Animals effectively contributed to plant fitness. Nevertheless, the fitness contribution was not as elevated as the contribution from wind pollination (~30 vs. 70 %, respectively). Increased plant investment on PDs significantly elevated fitness in plants of E. fragilis. The present study provides evidence that E. fragilis relies primarily on wind pollination, with pollination and fitness being supplemented by animal visitation. Additionally, besides its main role as pollen capture and germination, PDs act as a pollinator reward that benefits plant reproduction.

Keywords

Wind pollination Gymnosperm Pollination drop Ephedra fragilis Animal pollination Sucrose content 

Supplementary material

11258_2016_667_MOESM1_ESM.tiff (14.4 mb)
Supplementary material 1 (TIFF 14768 kb)

References

  1. Baker HG, Baker I (1983) Floral nectar sugar constituents in relation to pollinator type. In: Little RJ, Jones CE (eds) Handbook of pollination biology. Scientific and Academic Editions, New York, pp 117–141Google Scholar
  2. Bino RJ, Dafni A, Meeuse ADJ (1984a) Entomophily in the dioecious gymnosperm Ephedra aphylla Forssk. (=E. alte C.A. Mey.), with some notes on E. campylopoda C.A. Mey. I. Aspects of the entomophilous syndrome. Proc K Ned Akad van Wet 87:1–13Google Scholar
  3. Bino RJ, Devente N, Meeuse ADJ (1984b) Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk (=E. alte Ca Mey), with some notes on Ephedra campylopoda C.A. Mey. II. Pollination droplets, nectaries, and nectarial secretion in Ephedra. Proc K Ned Akad van Wet 87:15–24Google Scholar
  4. Bolinder K, Humphreys AM, Ehrlén J, Alexandersson R, Ickert-Bond SM, Rydin C (2014) Pollination mechanisms in the ancient gymnosperm clade Ephedra (Gnetales). Pollination in Ephedra (Gnetales) (Licenciate thesis), Stockholm University, Stockholm, pp. 30–49Google Scholar
  5. Bolinder K, Ivarsson LN, Humphreys AM, Ickert-Bond SM, Han F, Hoorn C, Rydin C (2015a) Pollen morphology of Ephedra (Gnetales) and its evolutionary implications. Grana 55:24–51CrossRefGoogle Scholar
  6. Bolinder K, Niklas KJ, Rydin C (2015b) Aerodynamics and pollen ultrastructure in Ephedra. Am J Bot 102:457–470CrossRefPubMedGoogle Scholar
  7. Bolinder K, Humphreys AM, Ehrlén J, Alexandersson R, Ickert-Bond SM, Rydin C (2016) From near extinction to diversification by means of a shift in pollination mechanism in the gymnosperm relict Ephedra (Ephedraceae, Gentales). Bot J Linn Soc 180:461–477CrossRefGoogle Scholar
  8. Buchmann SL, O’Rourke MK, Niklas KJ (1989) Aerodynamics of Ephedra trifurca. 3. Selective pollen capture by pollination droplets. Bot Gaz 150:122–131CrossRefGoogle Scholar
  9. Eifler DA (1995) Patterns of plant visitation by nectar-feeding lizards. Oecologia 101:228–233CrossRefGoogle Scholar
  10. Gomes VG, Quirino ZGM, Machado IC (2014) Pollination and seed dispersal of Melocactus ernestii Vaupel subsp. ernestii (Cactaceae) by lizards: an example of double mutualism. Plant Biol 16:315–322CrossRefPubMedGoogle Scholar
  11. Gong Y-B, Yang M, Vamosi JC, Yang H-M, Mu W-X, Lis J-K, Wan T (2015) Wind or insect pollination? Ambophily in a subtropical gymnosperm Gnetum parvifolium (Gnetales). Plant Species Biol. doi:10.1111/1442-1984.12112 Google Scholar
  12. González-Teuber M, Silva Bueno JC, Heil M, Boland W (2012) Increased host investment in extrafloral nectar (EFN) improves the efficiency of a mutualistic defensive service. PLoS One 7:e46598CrossRefPubMedPubMedCentralGoogle Scholar
  13. Heil M, González-Teuber M, Clement LW, Kautz S, Verhaagh M, Silva Bueno JC (2009) Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc Natl Acad Sci USA 106:18091–18096CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jin B, Zhang L, Lu Y, Wang D, Jiang XX, Zhang M, Wang L (2012) The mechanism of pollination drop withdrawal in Ginkgo biloba L. BMC Plant Biol 12:59CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kato M, Inoue T (1994) Origin of insect pollination. Nature 368:195CrossRefGoogle Scholar
  16. Kato M, Inoue T, Nagamitsu T (1995) Pollination biology of Gnetum (Gnetaceae) in a lowland mixed dipterocarp forest in Sarawak. Am J Bot 82:862–868CrossRefGoogle Scholar
  17. Kono M, Tobe H (2007) Is Cycas revoluta (Cycadaceae) wind- or insect-pollinated? Am J Bot 94:847–855CrossRefPubMedGoogle Scholar
  18. Kubitzki K (1990) Ephedraceae. In: Kubitski K (ed) The families and genera of vascular plants. Springer, Berlin, pp 379–382Google Scholar
  19. Labandeira CC, Kvacek J, Mostovski MB (2007) Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56:663–695CrossRefGoogle Scholar
  20. McWilliam JR (1958) The role of micropyle in the pollination of Pinus. Bot Gaz 120:109–117CrossRefGoogle Scholar
  21. Meeuse ADJ, Demeijer AH, Mohr OWP, Wellinga SM (1990) Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk (=E. alte C.A. Mey.), with some notes on Ephedra campylopoda C.A. Mey. III. Further anthecological studies and relative importance of entomophily. Isr J Bot 39:113–123Google Scholar
  22. Möller M, Mill RR, Glidewell SM, Masson D, Williamson B, Bateman RM (2000) Comparative biology of the pollination mechanisms in Acmopyle pancheri and Phyllocladus hypophyllus (Podocarpaceae s. l.). Ann Bot 86:149–158CrossRefGoogle Scholar
  23. Moussel B (1980) Gouttelette receptrice du pollen et pollinisation chez l’Ephedra distachya L.: observations sur le vivant et en microscopies photonique et electronique. Rev Cytol Biol Veg 3:65–89Google Scholar
  24. Mugnaini S, Nepi M, Guarnieri M, Piotto B, Pacini E (2007) Pollination drop in Juniperus communis: response to deposited material. Ann Bot 100:1475–1481CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Picini E (2009) Nectar and pollination drops: how different are they? Ann Bot 104:205–219CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nicolson SW, Thornburg RW (2007) Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 215–264CrossRefGoogle Scholar
  27. Niklas KJ, Kerchner V (1986) Aerodynamics of Ephedra trifurca. 2. Computer modeling of pollination efficiencies. J Math Biol 24:1–24CrossRefGoogle Scholar
  28. Niklas KJ, Buchmann SL, Kerchner V (1986) Aerodynamics of Ephedra trifurca. 1. Pollen grain velocity fields around stems bearing ovules. Am J Bot 73:966–979CrossRefGoogle Scholar
  29. NyHagen DF, Kragelund C, Olesen JM, Jones CG (2001) Insular interactions between lizards and flowers: flower visitation by an endemic Mauritian gecko. J Trop Ecol 17:755–761CrossRefGoogle Scholar
  30. Olesen JM, Valido A (2003) Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol Evol 18:177–181CrossRefGoogle Scholar
  31. Pellmyr O (2002) Pollination by animals. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell Science, Oxford, pp 157–184Google Scholar
  32. Pérez-Mellado V, Ortega F, Martín-García S, Perera A, Cortázar G (2000) Pollen load and transport by the insular lizard, Podarcis lilfordi (Squamata, Lacertidae) in coastal islets of Menorca (Balearic Islands, Spain). Isr J Zool 46:193–200CrossRefGoogle Scholar
  33. Porsch O (1910) Ephedra campylopoda CA Mey, eine entomophile Gymnosperme. Ber Dtsch Bot Ges 28:404–412Google Scholar
  34. Prior NA (2014) Proteins in gymnosperms pollination drops. PhD thesis. Stockholm University, StockholmGoogle Scholar
  35. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  36. Rodríguez-Pérez J, Larrinaga AR, Santamaría L (2012) Effects of frugivore preferences and habitat heterogeneity on seed rain: a multi-scale analysis. PLoS One 7:e33246CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rydin C, Bolinder K (2015) Moonlight pollination in the gymnosperm Ephedra (Gnetales). Biol Lett 11:4CrossRefGoogle Scholar
  38. Rydin C, Korall P (2009) Evolutionary relationships in Ephedra (Gnetales), with implications for seed plant phylogeny. Int J Plant Sci 170:1031–1043CrossRefGoogle Scholar
  39. Takaso T, Owens JN (1995) Pollination drop and microdrop secretions in Cedrus. Int J Plant Sci 156:640–649CrossRefGoogle Scholar
  40. Tang W (1995) Pollination drops in female cycad cones. Palms Cycads 48:20–22Google Scholar
  41. Traveset A, Saez E (1997) Pollination of Euphorbia dendroides by lizards and insects: spatio-temporal variation in patterns of flower visitation. Oecologia 111:241–248Google Scholar
  42. Whelan RJ, Ayre DJ, Beynon FM (2009) The birds and the bees: pollinator behaviour and variation in the mating system of the rare shrub Grevillea macleayana. Ann Bot 103:1395–1401CrossRefPubMedPubMedCentralGoogle Scholar
  43. Whitaker AH (1987) The roles of lizards in New Zealand plant reproductive strategies. NZ J Bot 25:315–328CrossRefGoogle Scholar
  44. Wyatt R, Broyles SB, Dedra GS (1992) Environmental influences on nectar production in milkweeds (Asclepias syriaca and A. exaltata). Am J Bot 79:636–642CrossRefGoogle Scholar
  45. Ziegler H (1959) Über die Zusammensetzung des ‘Bestäubungstropfens’ und den Mechanismus seiner Sekretion. Planta 52:587–599CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Departamento de BiologíaUniversidad de La SerenaLa SerenaChile
  2. 2.Estación Biológica de Doñana CSICSevillaSpain

Personalised recommendations