Improving restoration success through research-driven initiatives: case studies targeting Pinus pinea reforestation stock development in Lebanon

Abstract

Lebanon is located in one of the most ecologically diverse semi-arid regions of the world, characterized by endemism and richness of higher plants, which persist despite centuries of intensive agro-sylvo-pastoral use and more recent urbanization. Extensive deforestation, fires, and potential desertification have advanced concerns over the sustainability of naturally forested ecosystems in Lebanon, with only ca. 13 % forest cover remaining. Despite high numbers of seedlings planted in recent decades, reforestation success in Lebanon has been historically low. Increased success can be achieved through the effective production of high-quality native plant seedlings, capable of survival in increasingly arid climatic and harsh edaphic conditions. Through two trials focused on Pinus pinea as a model species, we aim to use a research-based approach to identify techniques required to produce high-quality seedlings to improve post-transplant performance in Lebanon. The first trial examines the suitability of using controlled release fertilizer for seedling production and evaluates the effect of fertilizer application rates on seedling morphological and tissue nutrient parameters. The second study examines the role of water availability during the three key periods of seedling development in the nursery to identify the optimal irrigation regime needed to achieve functional attributes associated with seedling drought and cold hardiness. Our findings serve as the first data-driven recommendations for improved seedling production in Lebanon and the greater region as well as demonstrate how locally integrated planning can result in effective capacity building.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Program funded by the United States Agency for International Development and implemented by the United States Forest Service, International Programs.

References

  1. Abahussain AA, Abdu AS, Al-Zubari WK, El-Deen NA, Abdul-Raheem M (2002) Desertification in the Arab region: analysis of current status and trends. J Arid Env 51(4):521–545

    Article  Google Scholar 

  2. Abi-Saheh B, Nasser N, Rami H, Safi S, Tohme H (1996) Terrestrial flora. In: Hamadeh S, Khouzami M, Tohme G (eds) Biological diversity of Lebanon—complete report. UNEP Project GF/6105-92-72, Beirut, Lebanon, pp 65–94

  3. Baltaxe R (1965) Report on mapping the forests of Lebanon. Green Plan and Food and Agricultural Organization, Beirut

    Google Scholar 

  4. Beikircher B, Florineth F, Mayr S (2010) Restoration of rocky slopes based on planted gabions and use of drought-preconditioned woody species. Ecol Eng 36:421–426. doi:10.1016/j.ecoleng.2009.11.008

    Article  Google Scholar 

  5. Blake J, Zaerr J, Hee S (1979) Controlled moisture stress to improve cold hardiness and morphology of Douglas-fir seedlings. For Sci 25:576–582

    Google Scholar 

  6. Burdett AN (1979) A nondestructive method for measuring the volume of intact plant parts. Can J For Res 9(1):120–122. doi:10.1139/x79-021

    Article  Google Scholar 

  7. Burr KE, Tinus RW, Wallner SJ, King RM (1990) Comparison of three cold hardiness tests for conifer seedlings. Tree Physiol 6(4):351–369. doi:10.1093/treephys/6.4.351

    CAS  Article  PubMed  Google Scholar 

  8. Choueiter D, Ucenic CI (2007) Pinus pinea L. forest, a very important but threatened ecosystem in the Lebanon. In: Proceedings of a 2nd international conference on energy and environment, World Scientific and Engineering Academy and Society (IASME/WSEAS), Stevens Point, WI, USA, pp 264–268

  9. Cuesta B, Villar-Salvador P, Puértolas J, Jacobs DF, Rey Benayas JM (2010) Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. For Ecol Manag 260:71–78. doi:10.1016/j.foreco.2010.04.002

    Article  Google Scholar 

  10. Del Campo AD, Navarro Cerrillo RM, Hermoso J, Ibáñez AJ (2007) Relationships between site and stock quality in Pinus halepensis Mill. reforestation on semiarid landscapes in eastern Spain. Ann For Sci 64:719–731. doi:10.1051/forest

    Article  Google Scholar 

  11. Dominguez-Lerena S, Herrero Sierra N, Carrasco Manzano I, Ocaña Bueno L, Peñuelas Rubira JL, Mexal JG (2006) Container characteristics influence Pinus pinea seedling development in the nursery and field. For Ecol Manag 221:63–71

    Article  Google Scholar 

  12. Dumroese RK (2003) Hardening fertilization and nutrient loading of conifer seedlings. In: Riley LE, Dumroese, RK, Landis TD (eds) National proceedings: Forest and Conservation Nursery Associations. RMRS-P-28, USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, USA, pp 31–34

  13. Dumroese RK,  Pinto JR, Montville ME (2015) Using container weights to determine irrigation needs: a simple method. Native Plant J 16(1):67–71

    Article  Google Scholar 

  14. Dumroese RK, Landis TD, Pinto JR, Haase DL, Wilkinson KW, Davis AS (2016) Meeting forest restoration challenges: using the target plant concept. Reforesta 1:37–52

    Article  Google Scholar 

  15. Duryea ML (1984) Nursery cultural practices: impacts on seedling quality. In: Duryea ML, Landis TD (eds) Forestry nursery manual: production of bareroot seedlings. Springer, Dordrecht, pp 143–164. doi:10.1007/978-94-009-6110-4_15

    Google Scholar 

  16. El Hajj R, Al Jawhary D, Moukaddem T, Khater C (2014) Forest sustainability in north Lebanon: a challenging complexity in a changing environment. Int J For Res. doi:10.1155/2014/212316

    Google Scholar 

  17. Grossnickle SC (2000) Ecophysiology of northern spruce species. NRC Research Press, Ottawa. doi:10.1139/9780660179599

    Google Scholar 

  18. Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294. doi:10.1007/s11056-004-8303-2

    Article  Google Scholar 

  19. Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New For 43:711–738. doi:10.1007/s11056-012-9336-6

    Article  Google Scholar 

  20. Grossnickle SC, Arnott JT, Major JE, Tschaplinski TJ (1991) Influence of dormancy induction treatments on western hemlock seedlings. I. Seedling development and stock quality assessment. Can J For Res 21:175–185. doi:10.1139/x91-020

    Article  Google Scholar 

  21. Guehl J, Clement A, Kaushal P, Aussenac G (1993) Planting stress, water status and non-structural carbohyrates concentrations in Corsican pine seedlings. Tree Physiol 12:173–183

    CAS  Article  PubMed  Google Scholar 

  22. Haktanir K, Karaca A, Omar SM (2004) The prospects of the impact of desertification on Turkey, Lebanon, Syria and Iraq. In: Marquina A (ed) Environmental challenges in the Mediterranean 2000–2050. Springer, Dordrecht, pp 139–154

    Google Scholar 

  23. Islam MA, Apostol KG, Jacobs DF, Dumroese RK (2009) Fall fertilization of Pinus resinosa seedlings: nutrient uptake, cold hardiness, and morphological development. Ann For Sci 66(7):1–9

    Article  Google Scholar 

  24. Jacobs DF, Timmer VR (2005) Fertilizer-induced changes in rhizosphere electrical conductivity: relation to forest tree seedling root system growth and function. New For 30:147–166

    Article  Google Scholar 

  25. Khouzami M, Hayek A, Bassil M, Fortunat L (1996) Biological diversity of Lebanon. Republic of Lebanon, Ministry of Agriculture (MoA) and United Nations Development Programme, Beirut

  26. Landis TD (1985) Mineral nutrition as an index of seedling quality. In: Duryea ML (ed) Evaluating seedling quality: principles, procedures, and predictive abilities of major tests. Forest Research Laboratory, Oregon State University, Corvallis, pp 29–48

    Google Scholar 

  27. Landis TD (1989) Mineral nutrients and fertilization. In: Landis TD, Tinus RW, McDonald SE, Barnett JP (eds) Container tree nursery manual. USDA Agricultural Handbook 674, USDA Forest Service, Corvallis, OR, USA, pp 1–70

  28. Landis TD (1999) Seedling development: the establishment, rapid growth, and hardening phases. In: Landis TD, Tinus R, McDonald S, Barnett J (eds) Container tree nursery manual. USDA Agricultural Handbook 674, US Department of Agriculture Forest Service, Washington, DC, USA, pp 125–163

  29. Landis TD (2003) The target seedling concept—a tool for better communication between nurseries and their customers. In: Riley LR, Dumroese RK, Landis TD (eds) National proceedings, Forest and Conservation Nursery Associations; RMRS-P-28; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, pp 12–16

  30. Landis TD (2013) Conditioning nursery plants to promote hardiness and dormancy. For Nursery Notes Winter: 5–14

  31. Landis TD, Wilkinson KM (2009) Water quality and irrigation. In: Dumroese RK, Luna T, Landis TD (eds) Nursery manual for native plants: a guide for tribal nurseries, Volume 1: nursery management. Agriculture Handbook 730. US Department of Agriculture, Forest Service, Washington, D.C., USA, pp 177–199

  32. Lavender D (1984) Plant physiology and nursery environment: interactions affecting seedling growth. In: Durya ML, Landis TD, Perry CR (eds) Forestry nursery manual: production of bareroot seedlings. Springer, Dordrecht, pp 133–141. doi:10.1007/978-94-009-6110-4_14

    Google Scholar 

  33. Lim CC, Arora R, Townsend EC (1998) Comparing Gompertz and Richards functions to estimate freezing injury in Rhododendron using electrolyte leakage. J Am Soc for Hortic Sci 123(2):246–252

    Google Scholar 

  34. Luis VC, Taschler D, Hacker J, Jimenez MS, Wieser G, Neuner G (2007) Ice nucleation and frost resistance of Pinus canariensis seedlings bearing needles in three different developmental states. Ann For Sci 64:177–182

    Article  Google Scholar 

  35. McDonald SE (1984) Irrigation of forest-tree nurseries: monitoring and effects on seedling growth. In: Duryea ML, Landis TD, Perry CR (eds) Forestry nursery manual: production of bareroot seedlings. Springer, Dordrecht, pp 107–121. doi:10.1007/978-94-009-6110-4_12

    Google Scholar 

  36. Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13:1510–1513

    Article  Google Scholar 

  37. Mendoza I, Gómez-Aparicio L, Zamora R, Matías L (2009) Recruitment limitation of forest communities in a degraded Mediterranean landscape. J Veg Sci 20(2):367–376

    Article  Google Scholar 

  38. Mitri G, El Hajj R (2007) State of Lebanon’s Forests. Association for Forest, Development and Conservation, Beirut

    Google Scholar 

  39. MoA (2003) National action programme to combat desertification. United Nations Convention to Combat Desertification. http://www.unccd.int/ActionProgrammes/lebanon-eng2003.pdf. Accessed 1 Apr 2016

  40. Mollá S, Villar-Salvador P, Garcia-Fayos P, Peñuelas Rubira JL (2006) Physiological and transplanting performance of Quercus ilex L. (holm oak) seedlings grown in nurseries with different winter conditions. For Ecol Manag 237(2006):218–226

    Article  Google Scholar 

  41. Navarro RM, Villar-Salvador P, del Campo A (2006) Morfología y establecimiento de los plantones. In: Cotina J, Penuelas JL, Save R, Puertolas J, Vilagros A (eds) Estado Actual de Conocimientos. Organizmo Autonomo Parques Natcionales Ministerio de Medio Ambiente, Madrid, pp 67–89

    Google Scholar 

  42. Nehme ME (2014) Outplanting monitoring and inspection practices and results. United States Agency of International Development. http://lri-lb.org/sites/default/files/AGuidetoReforestationBestPractices.pdf. Accessed 28 Apr 2016

  43. Oliet J, Planelles R, Segura ML, Artero F, Jacobs DF (2004) Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilizer. Sci Hortic 103(2004):113–129. doi:10.1016/j.scienta.2004.04.019

    CAS  Article  Google Scholar 

  44. Oliet J, Planelles R, Artero F, Valverde R, Jacobs DF, Segura ML (2009) Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New For 37:313–331. doi:10.1007/s11056-008-9126-3

    Article  Google Scholar 

  45. Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct Ecol 21:489–495. doi:10.1111/j.1365-2435.2007.01267.x

    Article  Google Scholar 

  46. Palá JAO, González RP, Árias ML, Caballero FA (1997) Efecto de la fertilizacion en vivero sobre la supervivencia en plantacion de Pinus halapensis. El Madrid Reunión Del Grupo de Trabajo de Forestación. Cuadernos de la Sociedad Espanola de Ciencias Forestales, Madrid, pp 69–79

    Google Scholar 

  47. Palacios G, Navarro Cerrillo RM, del Campo A, Toral M (2009) Site preparation, stock quality and planting date effect on early establishment of Holm oak (Quercus ilex L.) seedlings. Ecol Eng 35:38–46

    Article  Google Scholar 

  48. Pardos M, Royo A, Gil L, Pardos JA (2003) Effect of nursery location and outplanting date on field performance of Pinus halepensis and Quercus ilex seedlings. Forestry 76:67–81. doi:10.1093/forestry/76.1.67

    Article  Google Scholar 

  49. Pardos M, Climent J, Almeida H, Calama R (2014) The role of developmental stage in frost tolerance of Pinus pinea L. seedlings and saplings. Ann For Sci 71:551–562. doi:10.1007/s13595-014-0361-9

    Article  Google Scholar 

  50. Pinto JR, Dumroese RK, Davis AS, Landis TD (2011a) Conducting seedling stocktype trials: a new approach to an old question. J For 109:293–299

    Google Scholar 

  51. Pinto JR, Marshall JD, Dumroese RK, Davis AS, Cobos DR (2011b) Establishment and growth of container seedlings for reforestation: a function of stocktype and edaphic conditions. For Ecol Manag 261:1876–1884

    Article  Google Scholar 

  52. Planelles R (2004) Efectos de la fertilización N-P-K en vivero sobre la calidad funcional de planta de Ceratonia siliqua L. Dissertation, Universidad Politécnica de Madrid

  53. Puértolas J, Gil L, Pardos JA (2003) Effects of nutritional status and seedling size on field performance of Pinus halepensis planted on former arable land in the Mediterranean Basin. Forestry 76:159–168

    Article  Google Scholar 

  54. Puértolas J, Gil L, Pardos JA (2005) Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis Mill.) seedlings assessed by chlorophyll fluorescence. Forestry 78:501–511. doi:10.1093/forestry/cpi055

    Article  Google Scholar 

  55. Puértolas J, Jacobs DF, Benito LF, Peñuelas JL (2012) Cost-benefit analysis of different container capacities and fertilization regimes in Pinus stock-type production for forest restoration in dry Mediterranean areas. Ecol Eng 44:210–215

    Article  Google Scholar 

  56. Rikala R, Repo T (1997) The effect of late summer fertilization on the frost hardening of second-year scots pine seedlings. New For 14:33–44. doi:10.1023/A:1006505919556

    Article  Google Scholar 

  57. Rose R, Carlson WC, Morgan P (1990) The target seedling concept. In: Rose R, Campbell S, Landis T (eds) Western Forest Nursery Association’s Target Seedling Symposium; General Technology Report (1990) RM-200. USDA Forest Service, Rocky Mountain Forest and Range Experimental Station, Fort Collins, pp 79–90

    Google Scholar 

  58. Royo A, Gil L, Pardos JA (2001) Effect of water stress conditioning on morphology, physiology and field performance of Pinus halepensis Mill. seedlings. New For 21:127–140. doi:10.1023/A:1011892732084

    Article  Google Scholar 

  59. Sáez-Laguna E, Guevara MÁ, Díaz LM, Sánchez-Gómez D, Collada C, Aranda I, Cervera MT (2014) Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS One 9(8):e103145

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sattout EJ, Talhouk SN, Caligari PDS (2007) Economic value of cedar relics in Lebanon: an application of contingent valuation method for conservation. Ecol Econ 61(2):315–322

    Article  Google Scholar 

  61. South D, Harris SW, Barnett JP, Hainds MJ, Gjerstad (2005) Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings. For Ecol Manag 204(2):385–398. doi:10.1016/j.foreco.2004.09.016

    Article  Google Scholar 

  62. Talhouk SN, Zurayk R, Khuri S (2001) Conservation of the coniferous forests of Lebanon: past, present and future prospects. Oryx 35(3):206–215

    Article  Google Scholar 

  63. Timmis R, Tanaka Y (1976) Effects of container density and plant water stress on growth and cold hardiness of Douglas-fir seedlings. For Sci 22:167–172

    Google Scholar 

  64. Tsakaldimi M, Zagas T, Tsitsoni T, Ganatsas P (2005) Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant Soil 278:85–93

    CAS  Article  Google Scholar 

  65. UNDP (2008) Safeguarding and restoring Lebanon’s woodland resources. United Nations Development Programme. http://www.undp.org/content/dam/undp/documents/projects/LBN/00050136_00061783%20Reforestration%20Project%20Document.pdf. Accessed 1 Apr 2016

  66. USAID (2015) Lebanon Reforestation Initiative: final performance evaluation—September 2015. United States Agency of International Development. http://pdf.usaid.gov/pdf_docs/PA00M24D.pdf. Accessed 28 Apr 2016

  67. Uscola M, Oliet JA, Villar-Salvador P, Díaz-Pinés E, Jacobs DF (2014) Nitrogen form and concentration interact to affect the performance of two ecologically distinct Mediterranean forest trees. Eur J For Res 133:235–246. doi:10.1007/s10342-013-0749-3

    CAS  Article  Google Scholar 

  68. Vallejo R, Aronson J, Pausa JG, Cortina J (2006) Restoration of Mediterranean woodlands. In: Van Andel J, Aronson J (eds) Restoration ecology: the new frontier. Blackwell Publishing, Oxford, pp 193–207

    Google Scholar 

  69. Van den Driessche R (1991) Effects of nutrients on stock performance in the forest. In: Van den Driessche R (ed) Mineral nutrition of conifer seedlings. CRC Press, Boca Raton, pp 229–260

    Google Scholar 

  70. Vilagrosa A, Cortina J, Gil-Pelegrin E, Bellot J (2003) Suitability of drought-preconditioning techniques in Mediterranean climate. Restor Ecol 11:208–216. doi:10.1046/j.1526-100X.2003.00172.x

    Article  Google Scholar 

  71. Villar-Salvador P, Ocala L, Peñuelas J, Carrasco I (1999) Effect of water stress conditioning on the water relations, root growth capacity, and the nitrogen and non-structural carbohydrate concentration of Pinus halepensis Mill. (Aleppo pine) seedlings. Ann For Sci 56:459–466

    Article  Google Scholar 

  72. Villar-Salvador P, Planelles R, Enríquez E, Rubira JP (2004) Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manag 196:257–266. doi:10.1016/j.foreco.2004.02.061

    Article  Google Scholar 

  73. Villar-Salvador P, Puértolas J, Peñuelas JL, Planelles R (2005) Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Invest Agrar Sist Recur For 14:408–418

    Article  Google Scholar 

  74. Villar-Salvador P, Puértolas J, Peñuelas JL, Penuelas R (2010) Morphological and physiological plant quality in woodland restoration: a Mediterranean perspective. In: Bautista S, Aronson J, Vallejo VR (eds) Land restoration to combat desertification: innovative approaches, quality control and project evaluation. Fundación CEAM, Valencia, pp 103–120

    Google Scholar 

  75. Villar-Salvador P, Puértolas J, Cuesta B, Peñuelas JL, Uscola M, Heredia-Guerrero N, Rey Benayas JM (2012) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For 43:755–770. doi:10.1007/s11056-012-9328-6

    Article  Google Scholar 

  76. Villar-Salvador P, Peñuelas JL, Jacobs DF (2013) Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings. Tree Physiol 33:221–232. doi:10.1093/treephys/tps133

    CAS  Article  PubMed  Google Scholar 

  77. Wright DW (1986) The pour-through nutrient extraction procedure. Hortic Sci 21:227–229

    CAS  Google Scholar 

  78. Zahran MA, Gilbert FS (2010) Climate-vegetation: Afro-Asian Mediterranean and Red Sea coastal lands. Springer, Dordrecht

    Google Scholar 

Download references

Acknowledgments

We thank the American University of Beirut Nature Conservation Center and the Lebanon Reforestation Initiative for facilitating this work and allowing for the use of research space. We are grateful to Majd Kashan, Khaled Slim, Sakra Abou Eid, Sarita Bassil, Raymond Farhat, Jeremiah Pinto, Kea Woodruff, Don Regan, Brendan Baughn, and Edward Flathers for assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olga A. Kildisheva.

Ethics declarations

Funding

Financial support was provided by the USDA Forest Service and the University of Idaho, Center for Forest Nursery and Seedling Research.

Additional information

Communicated by Mrs. Olga Kildisheva, Ms. Lauren Svejcar and Dr. Erik Hamerlynck.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kildisheva, O.A., Aghai, M.M., Bouazza, K. et al. Improving restoration success through research-driven initiatives: case studies targeting Pinus pinea reforestation stock development in Lebanon. Plant Ecol 218, 39–53 (2017). https://doi.org/10.1007/s11258-016-0632-7

Download citation

Keywords

  • Controlled release fertilization
  • Irrigation
  • Container seedling
  • Cold hardiness
  • Stone pine
  • Target plant concept (TPC)