Plant Ecology

, Volume 217, Issue 7, pp 923–933 | Cite as

Frugivore choice and escape from pre-dispersal seed predators: the case of Dialium guianense and two sympatric primate species in southern Mexico

  • Julieta Benítez-Malvido
  • Isela Zermeño-Hernández
  • Ana María González-DiPierro
  • Rafael Lombera
  • Alejandro Estrada
Article

Abstract

Seed predation and dispersal play key roles in the regeneration of tropical trees. Pre-dispersal predation may cause high mortality in seed crops. Seeds may escape pre-dispersal predation when ingested with the fruit pulp and moved away from the parent trees by frugivores. In southern Mexico, we investigated if seed traits (i.e., length, width, and mass) and seed damage by insects on Dialium guianense differed according to seed source: from the tree crowns, the ground, and from howler (Alouatta pigra) and spider monkey (Ateles geoffroyi) feces. We counted the number of seeds with circular entrance and/or exit holes in their tegument. Ingested seeds were larger, heavier, and wider than non-ingested seeds. Seeds ingested by the howler were, however, significantly larger than those ingested by the spider monkey. Damaged seeds showed the lowest values for all seed traits. The proportion of damage declined significantly from seeds on the ground (37 %), to seeds in spider monkey feces (29 %), to seeds from tree crowns (11 %), and finally to seeds in howler monkey feces (7 %). Fruit selection by primates influences dispersal quality differently, even when feeding on the same plant species. The howler monkey may increase the reproductive success of D. guianense by selecting larger and predation-free seeds/fruits.

Keywords

Alouatta pigra Ateles geoffroyi Dialium guianense Frugivore choice Pre-dispersal seed predation Seed-feeding insects 

References

  1. Amato KR, Garber PA (2014) Nutrition and foraging strategies of the black howler monkey (Alouatta pigra) in Palenque National Park, Mexico. Am J Primatol 76:774–787. doi:10.1002/ajp.22268 CrossRefPubMedGoogle Scholar
  2. Baraloto C, Forget PM (2007) Seed size, seedling morphology, and response to deep shade and damage in Neotropical rain forest trees. Am J Bot 94:901–911CrossRefPubMedGoogle Scholar
  3. Beckman NG, Muller-Landau HC (2011) Linking fruit traits to variation in predispersal vertebrate seed predation, insect seed predation, and pathogen attack. Ecology 92:2131–2140CrossRefPubMedGoogle Scholar
  4. Benítez-Malvido J, González-Di Pierro AM, Lombera R, Guillén S, Estrada A (2014) Seed source, seed traits, and frugivore habits: implications for dispersal quality in two sympatric primates. Am J Bot 101:970–978CrossRefPubMedGoogle Scholar
  5. Boege K, Dirzo R (2004) Intraspecific variation in growth, defense and herbivory in Dialium guianense (Caesalpiniaceae) mediated by edaphic heterogeneity. Plant Ecol 175:59–69CrossRefGoogle Scholar
  6. Bravo SP (2008) Seed dispersal and ingestion of insect-infested seeds by black howler monkeys in flooded forests of the Parana River, Argentina. Biotropica 40:471–476CrossRefGoogle Scholar
  7. Burgos A, Grezb AA, Bustamante RO (2008) Seed production, pre-dispersal seed predation and germination of Nothofagus glauca (Nothofagaceae) in a temperate fragmented forest in Chile. For Ecol Manag 255:1226–1233CrossRefGoogle Scholar
  8. Chaves OM, Stoner KE, Arroyo-Rodríguez V, Estrada A (2011) Effectiveness of spider monkeys (Ateles geoffroyi vellerosus) as seed dispersers in continuous and fragmented rain forests in Southern Mexico. Int J Prim 1:177–192CrossRefGoogle Scholar
  9. Cipollini ML, Stiles EW (1991) Seed predation by the bean weevil Acanthoscelides obtectus on Phaseolus species: consequences for seed size, early growth and reproduction. Oikos 60:205–214CrossRefGoogle Scholar
  10. Crawley MJ (1992) Seed predators and plant population dynamics. In: Fenner M (ed) The ecology of regeneration in plant communities. Commonwealth Agricultural Bureau International, Wallingford, pp 157–191Google Scholar
  11. Crawley M (1993) GLIM for ecologists. Blackwell, CambridgeGoogle Scholar
  12. Cullen J, Julien M, Mcfadyen R (2012) Biological control of weeds in Australia. CSIRO Publishing, MelbourneGoogle Scholar
  13. Dew JL (2008) Spider monkeys as seed dispersers. In: Campbell CJ (ed) Spider monkeys: behavior, ecology and evolution of the genus Ateles. Cambridge University Press, Cambridge, pp 155–182CrossRefGoogle Scholar
  14. Di Fiore A, Campbell CJ (2007) The Atelines: variation in ecology, behavior, and social organization. In: Campbell CJ, Fuentes A, Mackinnon KC, Panger M, Bearder S (eds) Primates in perspective. Oxford University Press, Oxford, pp 155–185Google Scholar
  15. Di Fiore A, Link A, Dew JL (2008) Diets of wild spider monkeys. In: Campbell CJ (ed) Spider monkeys: behaviour, ecology and evolution of the genus Ateles. Cambridge University Press, Cambridge, pp 81–137CrossRefGoogle Scholar
  16. Estrada A, Van belle S, García Del Valle Y (2004) Survey of black howler (Alouatta pigra) and spider (Ateles geoffroyi) monkeys along the Río Lacantún, Chiapas, Mexico. Neotrop Primates 12:70–75Google Scholar
  17. Felton AM, Felton A, Raubenheimer D, Simpson SJ, Foley WJ, Wood JT, Lindenmayer DB (2009a) Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav Ecol 20:685–690. doi:10.1093/beheco/arp021 CrossRefGoogle Scholar
  18. Felton AM, Felton A, Lindenmayer DB, Foley WJ (2009b) Nutritional goals of wild primates. Funct Ecol 23:70–78CrossRefGoogle Scholar
  19. Fox CW, Wallin WG, Bush ML, Czesak ME, Messina FJ (2012) Effects of seed beetles on the performance of desert legumes depend on host species, plant stage, and beetle density. J Arid Environ 80:10–16CrossRefGoogle Scholar
  20. Fricke E, Tewksbury JJ, Rogers HS (2014) Multiple natural enemies cause distance-dependent mortality at the seed-to-seedling transition. Ecol Lett 17:593–598CrossRefPubMedGoogle Scholar
  21. Gómez-Pompa A, Dirzo R (1995) Atlas de las áreas naturales protegidas de México. CONABIO-INE, Mexico CityGoogle Scholar
  22. González-Di Pierro AM, Benítez-Malvido J, Méndez-Toribio M, Zermeño I, Arroyo-Rodríguez V, Stoner KE, Estrada A (2011) Effects of the physical environment and primate gut passage on the early establishment of an old-growth forest tree species (Ampelocera hottlei Standley) in tropical rain forest fragments. Biotropica 43:459–466CrossRefGoogle Scholar
  23. González-Zamora A, Arroyo-Rodríguez V, Chaves OM, Sánchez-López S, Stoner KE, Riba-Hernández P (2009) Diet of spider monkeys (Ateles geoffroyi) in Mesoamerica: current knowledge and future directions. Am J Primatol 71:8–20CrossRefPubMedGoogle Scholar
  24. Howe HF, Smallwood J (1986) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228CrossRefGoogle Scholar
  25. Jansen PA, Hirscha BT, Emsensb W-J, Zamora-Gutiérrez V, Wikelskia M, Kayset R (2012) Thieving rodents as substitute dispersers of megafaunal seeds. PNAS 109:12610–12615CrossRefPubMedPubMedCentralGoogle Scholar
  26. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528CrossRefGoogle Scholar
  27. Janzen DH (1980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. J Ecol 68:929–952CrossRefGoogle Scholar
  28. Johnson CD (1981) Interactions between bruchid (Coleoptera) feeding guilds and behavioral patterns of pods of the Leguminosae. Environ Entomol 10:249–253CrossRefGoogle Scholar
  29. Jordano P (2014) Fruits and frugivory. In: Ghallager RS (ed) Seeds: the ecology of regeneration in plant communities, 3rd edn. CABI Publishing, Wallingford, pp 18–61CrossRefGoogle Scholar
  30. Julliot C (1996) Fruit choice by red howler monkeys (Alouatta seniculus) in a tropical rain forest. Am J Primatol 40:261–282CrossRefGoogle Scholar
  31. Kalko EKV, Herre EA, Handley CO (1996) Relation of fig fruit characteristics to fruit-eating bats in the new and old world tropics. J Biogeo 23:565–576CrossRefGoogle Scholar
  32. Lambert JE (1998) Primate digestion: interaction among anatomy, physiology, and feeding ecology. Evol Anthropol 7:8–20CrossRefGoogle Scholar
  33. Link A, Di Fiore A (2006) Seed dispersal by spider monkeys and its importance in the maintenance of neotropical rain-forest diversity. J Trop Ecol 22:235–246CrossRefGoogle Scholar
  34. Mariaca-Méndez R (2002) Marqués de Comillas, Chiapas: procesos de inmigración en el trópico húmedo de México. Ph.D. Dissertation, Universidad Iberoamericana, MexicoGoogle Scholar
  35. Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Pro Roy Soc B-Biol Sci 273:2575–2584CrossRefGoogle Scholar
  36. Martins MM (2006) Comparative seed dispersal effectiveness of sympatric Alouatta guariba and Brachyteles arachnoides in southeastern Brazil. Biotropica 38:57–63Google Scholar
  37. Milton K (1981) Food choice and digestive strategies by two sympatric primate species. Am Nat 117:496–505CrossRefGoogle Scholar
  38. Milton K (1998) Physiological ecology of howlers (Alouatta): energetic and digestive considerations and comparison with the Colobinae. Int J Primatol 19:513–548CrossRefGoogle Scholar
  39. Moles AT, Warton DI, Westoby M (2003) Do small-seeded species have higher survival through seed predation than large-seeded species? Ecology 84:3148–3162CrossRefGoogle Scholar
  40. Nakagawa M et al (2005) Predispersal seed predation by insects vs. vertebrates in six Dipterocarp species in Sarawak, Malaysia. Biotropica 37:389–396CrossRefGoogle Scholar
  41. Naranjo E (2009) Ecology and conservation of Baird’s tapir in Mexico. Trop Conserv Sci 2:140–158Google Scholar
  42. Norconk MA, Wright BW, Conklin-Brittain NL, Vinyard CJ (2008) Mechanical and nutritional properties of foods as factors in Plattirrhyne dietary adaptations. In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB (eds) South American primates: comparative perspectives in the study of behavior, ecology and conservation. Springer, New York, pp 279–319Google Scholar
  43. Paz H, Martínez-Ramos M (2003) Seed mass and seedling performance within eight species of Psychotria (Rubiaceae). Ecology 84:439–450CrossRefGoogle Scholar
  44. Pennington TD, Sarukhán J (1998) Árboles tropicales de México. UNAM-FCE, MexicoGoogle Scholar
  45. Peres CA (1991) Seed predation of Cariniana micrantha (Lecythidaceae) by brown capuchin monkeys in Central Amazonia. Biotropica 23:262–270CrossRefGoogle Scholar
  46. Port-Carvalho M, Ferrari SF (2004) Occurrence and diet of the black bearded saki (Chiropotes satanas satanas) in the fragmented landscape of western Maranhão, Brazil. Neotrop Primates 12:17–21Google Scholar
  47. R-Core-Team-R (2015) R: a language and environment for statistical computing. Foundation for statistical computing, Vienna, Austria. In: computing, R.F.F.S. (ed). URL http://www.r-project.org/.
  48. Rey PJ, Gutierrez LE, Alcantara J, Valera F (1997) Fruit size in wild olives: implications for avian seed dispersal. Funct Ecol 11:611–618CrossRefGoogle Scholar
  49. Robertson AW, Trass A, Ladley JJ, Kelly D (2006) Assessing the benefits of frugivory for seed germination: the importance of the deinhibition effect. Funct Ecol 20:58–66CrossRefGoogle Scholar
  50. Russo SE, Chapman CA (2011) Primate seed dispersal: linking behavioural ecology with forest community structure. In: Campbell CJ, Fuentes A, MacKinnon KC, Bearder SK, Stumpf RM (eds) Primates in perspective 523-534. Oxford University Press, OxfordGoogle Scholar
  51. Sallabanks R, Courtney SP (1992) Frugivory, seed predation, and insect–vertebrate interactions. Ann Rev Entomol 37:377–400CrossRefGoogle Scholar
  52. Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revised: a conceptual review. New Phytol 188:333–353CrossRefPubMedGoogle Scholar
  53. Shiels AB, Drake DR (2011) Are introduced rats (Rattus rattus) both seed predators and dispersers in Hawaii? Biol Inv 13:883–894CrossRefGoogle Scholar
  54. Silvius KM, Fragoso JMV (2002) Pulp handling by vertebrate seed dispersers increases palm seed predation by bruchid beetles in the northern Amazon. J Ecol 90:1024–1032CrossRefGoogle Scholar
  55. Simão I, Maës Dos Santos FA, Pizzo MA (1997) Vertical stratification and diet of psittacids in a tropical lowland forest of Brazil. Ararajuba 5:169–174Google Scholar
  56. Sokal RS, Rohlf FJ (1995) Biometry. Freeman and Company, New YorkGoogle Scholar
  57. Stevenson PR, Castellanos MC, Pizarro JC, Garavito M (2002) Effects of seed dispersal by three ateline monkey species on seed germination at Tinigua National Park, Colombia. Int J Primatol 23:1187–1204CrossRefGoogle Scholar
  58. Stevenson PR, Pineda M, Samper T (2005) Influence of seed size on dispersal patterns of woolly monkeys (Lagothrix lagothricha) at Tinigua Park, Colombia. Oikos 110:435–440CrossRefGoogle Scholar
  59. Traveset A, Robertson AW, Rodríguez-Pérez J (2007) A review on the role of endozoochory in seed germination. In: Dennis AJ, Schupp EW, Green RJ, Westcott DA (eds) Seed dispersal: theory and its application in a changing world. CABI Publishing, Wallingford, pp 78–103CrossRefGoogle Scholar
  60. Vallejo-Marín M, Domínguez CA, Dirzo R (2006) Simulated predation reveals a variety of germination responses of Neotropical rainforest species. Am J Bot 93:360–376CrossRefGoogle Scholar
  61. Van Der Pijl L (1982) Principles of dispersal in higher plants. Springer-Verlag, Berlin 82 pp CrossRefGoogle Scholar
  62. Vieira ICG, Gavão N, Rosa NA (1996) Caracterização morfológica de frutos e germinação de sementes de espécies arbóreas nativas da Amazônia. Boletim Paraense Emílio Goeldi, Série Botânica 12:271–288Google Scholar
  63. Wheelwright NT (1985) Fruit size, gape width, and the diets of fruit-eating birds. Ecology 66:808–818CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Julieta Benítez-Malvido
    • 1
  • Isela Zermeño-Hernández
    • 1
  • Ana María González-DiPierro
    • 2
  • Rafael Lombera
    • 2
  • Alejandro Estrada
    • 3
  1. 1.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Unidad Académica Multidisciplinaria Las MargaritasUniversidad Intercultural de ChiapasLas MargaritasMexico
  3. 3.Estación de Biología “Los Tuxtlas”, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoSan Andrés TuxtlaMexico

Personalised recommendations