Skip to main content
Log in

Evidence for bark thickness as a fire-resistance trait from desert to savanna in fire-prone inland Australia

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Although bark thickness and fire-activity are correlated in many ecosystems worldwide, substantial data-gaps remain, especially for dryland biomes, preventing generalisation of this relationship at the global scale. We examined bark thickness trends in trees and shrubs across a large-scale fire-rainfall gradient from desert to dry savanna in northern Australia. Bark thickness increased with local fire activity but was unrelated to mean annual rainfall or the mean normalised difference vegetation index (surrogates of resource-productivity). In high-fire regions, thin-barked trees were restricted to localised low-fire patches. Thicker bark was associated with sites characterised by flammable Triodia hummock grassland (spinifex). Within this flora, bark thickness reflected a trade-off in trait allocation to fire resistance versus fire resilience. For trees, thicker bark (fire resistance) was strongly associated with epicormic resprouters. In contrast, fire-resilient species that were either basal resprouters or reseeders had thinner bark. With increasing aridity there was a shift in dominance from epicormic resprouters to thinner-barked shrub and mallee species that either basally resprout or are killed by fire. Pairwise congeneric species comparisons showed a consistent relationship of thicker bark under high fire activity. This same pattern also emerged from a multi-species comparison within the dominant tree genus Eucalyptus. Overall, for this system, species with thick bark at the sapling stage dominate where fire is frequent. Thus, we confirm that fire can be a major driver of plant traits in fire-prone drylands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht DE, Duguid AW, Coulson H, Harris MG, Latz PK (2007) Vascular plant checklist for the southern bioregions of the Northern Territory; nomenclature, distribution & conservation status. Northern Territory Herbarium, Alice Springs

    Google Scholar 

  • Allan GE, Southgate RI (2002) Fire regimes in the spinifex landscapes of Australia. In: Bradstock RA, Williams JE, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp 259–277

    Google Scholar 

  • Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA (2013) Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci USA 110:6442–6447. doi:10.1073/pnas.1211466110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradstock RA (2010) A biogeographic model of fire regimes in Australia: current and future implications. Global Ecol Biogeogr 19:145–158. doi:10.1111/j.1466-8238.2009.00512.x

    Article  Google Scholar 

  • Brooker MIH, Kleinig DA (2004) Field guide to eucalypts: Northern Australia, vol 3, 2nd edn. Bloomings Books, Melbourne

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burrows GE (2013) Buds, bushfires and resprouting in the eucalypts. Aust J Bot 61:331–349. doi:10.1071/BT13072

    Article  Google Scholar 

  • Catry FX, Moreira F, Pausas JG, Fernandes PM, Rego F, Cardillo E, Curt T (2012) Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS ONE 7:e39810. doi:10.1371/journal.pone.0039810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavender-Bares J, Kitajima K, Bazzaz FA (2004) Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr 74:635–662. doi:10.2307/4539077

    Article  Google Scholar 

  • Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol 197:19–35. doi:10.1111/nph.12001

    Article  CAS  PubMed  Google Scholar 

  • Clarke PJ, Lawes MJ, Murphy BP, Russell-Smith J, Nano CEM, Bradstock R, Enright NJ, Fontaine JB, Gosper CR, Radford I, Midgley JJ, Gunton RM (2015) A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Sci Total Environ 534:31–42. doi:10.1016/j.scitotenv.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  • Crowley G, Gardiner M, Marrinan M (2007) Tropical savannas fire response database. Tropical Savannas Cooperative Research Centre, Darwin. http://www.landmanager.org.au/directory-fire-responses-plants-tropical-savannas. Accessed April 2014

  • Dantas VdL, Pausas JG (2013) The lanky and the corky: re-escape strategies in savanna woody species. J Ecol 101:1265–1272. doi:10.1111/1365-2745.12118

    Article  Google Scholar 

  • Dantas VdL, Batalha MA, Pausas JG (2013) Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454–2463

    Article  Google Scholar 

  • Enright NJ, Fontaine JB, Bowman DMJS, Bradstock RA, Williams RJ (2015) Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front Ecol Environ 13:265–272. doi:10.1890/140231

    Article  Google Scholar 

  • Griffin G (1989) Spinifex, fire and rain. MSc Thesis, Maquarie University, Sydney

  • Hempson GP, Midgley JJ, Lawes MJ, Vickers KJ, Kruger LM (2014) Comparing bark thickness: testing methods with bark–stem data from two South African fire-prone biomes. J Veg Sci 25:1247–1256. doi:10.1111/jvs.12171

    Article  Google Scholar 

  • Hoffmann WA, Franco AC (2008) The importance of evolutionary history in studies of plant physiological ecology: examples from cerrados and forests of central Brazil. Braz J Plant Physiol 20:247–256

    Article  Google Scholar 

  • Hoffmann WA, Solbrig OT (2003) The role of topkill in the differential response of savanna woody species to fire. For Ecol Manag 180:273–286

    Article  Google Scholar 

  • Hoffmann WA, Adasme R, Haridasan M, de Carvalho MT, Geiger EL, Pereira MAB, Gotsch SG, Franco AC (2009) Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology 90:1326–1337. doi:10.1890/08-0741.1

    Article  PubMed  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768. doi:10.1111/j.1461-0248.2012.01789.x

    Article  PubMed  Google Scholar 

  • Jackson JF, Adams DC, Jackson UB (1999) Allometry of constitutive defense: a model and a comparative test with tree bark and fire regime. Am Nat 153:614–632

    Article  Google Scholar 

  • Knox KJE, Clarke PJ (2011) Fire severity and resource availability do not constrain resprouting ability in sclerophyll forests. Plant Ecol 212:1967–1978

    Article  Google Scholar 

  • Lawes MJ, Adie H, Russell-Smith J, Murphy B, Midgley JJ (2011a) How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2:art42. doi:10.1890/ES10-00204.1

    Article  Google Scholar 

  • Lawes MJ, Richards A, Dathe J, Midgley JJ (2011b) Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol 212:2057–2069. doi:10.1007/s11258-011-9954-7

    Article  Google Scholar 

  • Lawes MJ, Midgley JJ, Clarke PJ (2013) Costs and benefits of relative bark thickness in relation to fire damage: a savanna/forest contrast. J Ecol 101:517–524. doi:10.1111/1365-2745.12035

    Article  Google Scholar 

  • Lawes MJ, Richardson SJ, Clarke PJ, Midgley JJ, McGlone MS, Bellingham PJ (2014) Bark thickness does not explain the different susceptibility of Australian and New Zealand temperate rainforests to anthropogenic fire. J Biogeogr 41:1467–1477. doi:10.1111/jbi.12292

    Article  Google Scholar 

  • Midgley JJ, Lawes MJ (2016) Relative bark thickness: towards standardised measurement and analysis. Plant Ecol. doi:10.1007/s11258-016-0587-8

    Google Scholar 

  • Murphy BP, Parton P, Prior LD, Boggs GS, Franklin DC, Bowman DMJS (2010) Using generalized autoregressive error models to understand fire-vegetation-soil feedbacks in a mulga-spinifex mosaic. J Biogeogr 37:2169–2182

    Article  Google Scholar 

  • Murphy BP, Bradstock RA, Boer MM, Carter J, Cary GJ, Cochrane MA, Fensham RJ, Russell-Smith J, Williamson GJ, Bowman DMJS (2013) Fire regimes of Australia: a pyrogeographic model system. J Biogeogr 40:1048–1058. doi:10.1111/jbi.12065

    Article  Google Scholar 

  • Nano CEM, Clarke PJ (2008) Variegated desert vegetation: covariation of edaphic and fire variables provides a framework for understanding mulga-spinifex coexistence. Austral Ecol 33:848–862. doi:10.1111/j.1442-9993.2008.01855.x

    Article  Google Scholar 

  • Nano CEM, Clarke PJ (2011) How do drought and fire influence the patterns of resprouting in Australian deserts? Plant Ecol 212:2095–2110

    Article  Google Scholar 

  • Nano CEM, Bowland AE, Nano TJ, Raghu S, Pavey CR (2012) Demographic hurdles to persistence in Acacia peuce (F. Muell.): effects of resources, fire and browsing on a threatened keystone tree species from arid Australia. J Arid Environ 80:17–26

    Article  Google Scholar 

  • Nicholas AMM, Franklin DC, Bowman DMJS (2009) Coexistence of shrubs and grass in a semi-arid landscape: a case study of mulga (Acacia aneura, Mimosaceae) shrublands embedded in fire-prone spinifex (Triodia pungens, Poaceae) hummock grasslands. Aust J Bot 57:396–405. doi:10.1071/BT07157

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51. doi:10.1146/annurev.es.04.110173.000325

    Article  Google Scholar 

  • Orians GH, Milewski AV (2007) Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol Rev 82:393–423

    Article  PubMed  Google Scholar 

  • Paine CET, Stahl C, Courtois EA, Patiño S, Sarmiento C, Baraloto C (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Funct Ecol 24:1202–1210. doi:10.1111/j.1365-2435.2010.01736.x

    Article  Google Scholar 

  • Pausas JG (2015) Bark thickness and fire regime. Funct Ecol 29:315–327. doi:10.1111/1365-2435.12372

    Article  Google Scholar 

  • Pausas JG, Bradstock RA (2007) Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Global Ecol Biogeogr 16:330–340

    Article  Google Scholar 

  • Pausas JG, Ribeiro E (2013) The global fire–productivity relationship. Global Ecol Biogeogr 22:728–736. doi:10.1111/geb.12043

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. Version 3.2.1. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Richards AE, Wright IJ, Lenz TI, Zanne AE (2014) Sapwood capacitance is greater in evergreen sclerophyll species growing in high compared to low-rainfall environments. Funct Ecol 28:734–744. doi:10.1111/1365-2435.12193

    Article  Google Scholar 

  • Richardson SJ, Laughlin DC, Lawes MJ, Holdaway RJ, Wilmshurst JM, Wright M, Curran TJ, Bellingham PJ, McGlone MS (2015) Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities. Am J Bot 102:1590–1598. doi:10.3732/ajb.1500157

    Article  PubMed  Google Scholar 

  • Rosell JA, Olson ME (2014) The evolution of bark mechanics and storage across habitats in a clade of tropical trees. Am J Bot 101:764–777

    Article  PubMed  Google Scholar 

  • Russell-Smith J, Yates CP, Brock C, Westcott VC (2010) Fire regimes and interval-sensitive vegetation in semiarid Gregory National Park, northern Australia. Aust J Bot 58:300–317

    Google Scholar 

  • Russell-Smith J, Edwards AC, Price OF (2012a) Simplifying the savanna: the trajectory of fire-sensitive vegetation mosaics in northern Australia. J Biogeogr 39:1303–1317. doi:10.1111/j.1365-2699.2012.02679.x

    Article  Google Scholar 

  • Russell-Smith J, Gardener MR, Brock C, Brennan K, Yates CP, Grace B (2012b) Fire persistence traits can be used to predict vegetation response to changing fire regimes at expansive landscape scales—an Australian example. J Biogeogr 39:1657–1668. doi:10.1111/j.1365-2699.2012.02714.x

    Article  Google Scholar 

  • Schwilk DW, Gaetani MS, Poulos HM (2013) Oak bark allometry and fire survival strategies in the Chihuahuan Desert sky islands, Texas, USA. PLoS ONE 8(11):e79285. doi:10.1371/journal.pone.0079285

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci USA 106:20359–20364. doi:10.1073/pnas.0903410106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498. doi:10.1080/01431160500168686

    Article  Google Scholar 

  • Turner D, Ostendorf B, Lewis M (2008) An introduction to patterns of fire in arid and semi-arid Australia, 1998–2004. Rangel J 30:95–107. doi:10.1071/RJ07039

    Article  Google Scholar 

  • Turner D, Lewis M, Ostendorf B (2011) Spatial indicators of fire risk in the arid and semi-arid zone of Australia. Ecol Indic 11:149–167. doi:10.1016/j.ecolind.2009.09.001

    Article  Google Scholar 

  • VanderWeide BL, Hartnett DC (2011) Fire resistance of tree species explains historical gallery forest community composition. For Ecol Manag 261:1530–1538. doi:10.1016/j.foreco.2011.01.044

    Article  Google Scholar 

  • Vesk PA, Westoby M (2004) Funding the bud bank: a review of the costs of buds. Oikos 106:200–208

    Article  Google Scholar 

  • Ward BG, Bragg TB, Hayes BA (2014) Relationship between fire-return interval and mulga (Acacia aneura) regeneration in the Gibson desert and Gascoyne-Murchison regions of Western Australia. Int J Wildland Fire 23:394–402. doi:10.1071/WF13007

    Article  Google Scholar 

  • Woinarski JCZ, Fisher A (1995) Wildlife of lancewood (Acacia shirleyi) thickets and woodlands in Northern Australia. 2. Comparisons with other environments of the region (Acacia woodlands, Eucalyptus savanna woodlands and monsoon rainforests). Wildl Res 22:413–443

    Article  Google Scholar 

  • Wolfe BT, Saldaña Diaz GE, Van Bloem SJ (2014) Fire resistance in a Caribbean dry forest: inferences from the allometry of bark thickness. J Trop Ecol 30:133–142. doi:10.1017/S0266467413000904

    Article  Google Scholar 

  • Wright BR, Clarke PJ (2008) Relationships between soil temperatures and properties of fire in feathertop spinifex (Triodia schinzii (Henrard) Lazarides) sandridge desert in central Australia. Rangel J 30:317–325. doi:10.1071/RJ07049

    Article  Google Scholar 

  • Zizka A, Govender N, Higgins SI (2014) How to tell a shrub from a tree: a life-history perspective from a South African savanna. Austral Ecol 39:767–778. doi:10.1111/aec.12142

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Brett Murphy for providing derived environmental data for all of our sites. We thank the traditional owners of the western Mereenie area, Papunya Rangers, Sam Rando and Ritchie Brittingham (Central Land Council), for enabling access to the Eucalyptus gongylocarpa site. Many thanks also to the staff of the Australian Wildlife Conservancy—Josef Schofield, Danae Moore and Alexander James; and to Paul Davis (Desert Knowledge Australia) for providing access to sampling sites. MJL and AS were supported in part by a grant from Kirsty and Laurence Wahlberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Lawes.

Additional information

P. J. Clarke—Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, A.T., Nano, C.E.M., Clarke, P.J. et al. Evidence for bark thickness as a fire-resistance trait from desert to savanna in fire-prone inland Australia. Plant Ecol 217, 683–696 (2016). https://doi.org/10.1007/s11258-016-0611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0611-z

Keywords

Navigation