Plant Ecology

, Volume 217, Issue 11, pp 1331–1344 | Cite as

Biotic forcing: the push–pull of plant ranges

Article

Abstract

Scientists now recognize the importance of species interactions for range shifts, but lack general predictions about when and how species interactions influence shifts. The ‘biotic envelopes’ of plant species are defined by inter-specific interactions that influence their range limits. Two prominent hypotheses describe the biotic envelopes of plants by predicting that the outcome of inter-specific interactions is determined by climate, especially temperature and aridity. The first hypothesis posits that species distributions are structured by a trade-off between competitive ability and cold tolerance, so plant species exposed to warming climates will have trailing range edges that are limited by competitive interactions. The second hypothesis proposes that the effects of competition and facilitation from neighbouring plants change within a species range, such that facilitative interactions dominate in more environmentally stressful conditions; these facilitative interactions define leading range edges in a warming climate. We incorporate these hypotheses into a common framework that allows us to identify when mismatches in dispersal rates will lead to range expansion or contraction for a focal species. We provide general predictions about the biotic envelopes of plants, and how climate change will alter these envelopes, while highlighting uncertainties in applying these predictions beyond range edges.

Keywords

Biotic interactions Cold tolerance Geographic distribution Plant Range shift Stress gradient hypothesis 

Supplementary material

11258_2016_603_MOESM1_ESM.docx (79 kb)
Supplementary material 1 (DOCX 78 kb)

References

  1. Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518. doi:10.1038/nature14952 PubMedCrossRefGoogle Scholar
  2. Angert AL, Huxman TE, Chesson P, Venable DL (2009) Functional tradeoffs determine species coexistence via the storage effect. Proc Natl Acad Sci USA 106:11641–11645PubMedPubMedCentralCrossRefGoogle Scholar
  3. Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689. doi:10.1111/j.1461-0248.2011.01620.x PubMedCrossRefGoogle Scholar
  4. Bellot J, Cortina J, Maestre FT, Bautista S (2001) Potential for using facilitation by grasses to establish shrubs on a semiarid degraded steppe. Ecol Appl 11:1641–1655CrossRefGoogle Scholar
  5. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193. doi:10.1016/0169-5347(94)90088-4 PubMedCrossRefGoogle Scholar
  6. Bever JD, Westover KM, Antonovics J, Westover M (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573. doi:10.2307/2960528 CrossRefGoogle Scholar
  7. Brooker RW (2006) Plant-plant interactions and environmental change. New Phytol 171:271–284. doi:10.1111/j.1469-8137.2006.01752.x PubMedCrossRefGoogle Scholar
  8. Brooker RW, Travis JMJ, Clark EJ, Dytham C (2007) Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. J Theor Biol 245:59–65. doi:10.1016/j.jtbi.2006.09.033 PubMedCrossRefGoogle Scholar
  9. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielborger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34. doi:10.1111/j.1365-2745.2007.01295.x CrossRefGoogle Scholar
  10. Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623. doi:10.1146/annurev.ecolsys.27.1.597 CrossRefGoogle Scholar
  11. Bruelheide H, Scheidel U (1999) Slug herbivory as a limiting factor for the geographical range of Arnica montana. J Ecol 87:839–848CrossRefGoogle Scholar
  12. Bruno JF, Bertness MD, Stachowicz JJ (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125. doi:10.1016/S0169-5347(02)00045-9 CrossRefGoogle Scholar
  13. Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 Years: loss of species, co-occurrence, and function. Science 339:1611–1615. doi:10.1126/science.1232728 PubMedCrossRefGoogle Scholar
  14. Cain SA (1944) Foundations of plant geography. Harper & Row, New YorkGoogle Scholar
  15. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965CrossRefGoogle Scholar
  16. Callaway Ragan M, Brooker RWW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ, Callaway RM (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi:10.1038/nature00805.1 PubMedCrossRefGoogle Scholar
  17. Case TJ, Holt RD, McPeek MA, Keitt TH (2005) The community context of species’ borders: ecological and evolutionary perspectives. Oikos 108:28–46. doi:10.1111/j.0030-1299.2005.13148.x CrossRefGoogle Scholar
  18. Castro J, Zamora R, Hodar JA (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277. doi:10.1111/j.0022-0477.2004.00870.x CrossRefGoogle Scholar
  19. Cavieres LA, Brooker RW, Butterfield BJ, Cook BJ, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Schoeb C, Xiao S, Anthelme F, Bjoerk RG, Dickinson KJM, Cranston BH, Gavilan R, Gutierrez-Giron A, Kanka R, Maalouf J-P, Mark AF, Noroozi J, Parajuli R, Phoenix GK, Reid AM, Ridenour WM, Rixen C, Wipf S, Zhao L, Escudero A, Zaitchik BF, Lingua E, Aschehoug ET, Callaway RM (2014) Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol Lett 17:193–202. doi:10.1111/ele.12217 PubMedCrossRefGoogle Scholar
  20. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi:10.1126/science.1206432 PubMedCrossRefGoogle Scholar
  21. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366. doi:10.1146/annurev.ecolsys.31.1.343 CrossRefGoogle Scholar
  22. Clark JS (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am Nat 152:204–224. doi:10.1086/286162 PubMedCrossRefGoogle Scholar
  23. Clark JSS, Fastie C, Hurtt G, Jackson STT, Johnson C, King GAA, Lewis M, Lynch J, Pacala S, Prentice C, Schupp EW, Webb T, Wyckoff P et al (1998) Reid’s paradox of rapid plant migration—dispersal theory and interpretation of paleoecological records. Bioscience 48:13–24. doi:10.2307/1313224 CrossRefGoogle Scholar
  24. Cohen D (1968) A general model of optimal reproduction in a randomly varying environment. J Ecol 56:219–228. doi:10.2307/2258075 CrossRefGoogle Scholar
  25. Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306:1015–1018. doi:10.1126/science.1102586 PubMedCrossRefGoogle Scholar
  26. Crawley MJ (1989) Insect herbivores and plant population dynamics. Annu Rev Entomol 34:531–564. doi:10.1146/annurev.ento.34.1.531 CrossRefGoogle Scholar
  27. Cunze S, Heydel F, Tackenberg O (2013) Are plant species able to keep pace with the rapidly changing climate? PLoS One 8:e67909. doi:10.1371/journal.pone.0067909 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonCrossRefGoogle Scholar
  29. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786PubMedCrossRefGoogle Scholar
  30. de Bello F, Doležal J, Dvorský M, Chlumská Z, Řeháková K, Klimešová J, Klimeš L (2011) Cushions of Thylacospermum caespitosum (Caryophyllaceae) do not facilitate other plants under extreme altitude and dry conditions in the north-west Himalayas. Ann Bot 108:567–573. doi:10.1093/aob/mcr183 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard Press, Cambridge, pp 342–444Google Scholar
  32. Dobzhansky T (1950) Evolution in the tropics. Am Sci 38:209–221Google Scholar
  33. Dyer LA, Coley PD (2002) Tritrophic interactions in tropical and temperate communities. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Ellner S (1985) ESS germination strategies in randomly varying environments. II. Reciprocal yield-law models. Theor Popul Biol 28:80–116PubMedCrossRefGoogle Scholar
  35. Elmendorf SC et al (2012a) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175. doi:10.1111/j.1461-0248.2011.01716.x PubMedCrossRefGoogle Scholar
  36. Elmendorf SC et al (2012b) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Chang 2:453–457. doi:10.1038/nclimate1465 CrossRefGoogle Scholar
  37. Ettinger AK, HilleRisLambers J (2013) Climate isn’t everything: competitive interactions and variation by life stage will also affect range shifts in a warming world. Am J Bot 100:1344–1355. doi:10.3732/ajb.1200489 PubMedCrossRefGoogle Scholar
  38. Ettinger AK, Ford KR, HilleRisLambers J (2011) Climate determines upper, but not lower, altitudinal range limits of Pacific Northwest conifers. Ecology 92:1323–1331PubMedCrossRefGoogle Scholar
  39. Ewanchuk P, Bertness M (2002) Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia 132:392–401CrossRefGoogle Scholar
  40. Fragoso JMV (1997) Tapir-generated seed shadows: scale-dependent patchiness in the Amazon rain forest. J Ecol 85:519–529. doi:10.2307/2960574 CrossRefGoogle Scholar
  41. Fukami T, Nakajima M (2013) Complex plant-soil interactions enhance plant species diversity by delaying community convergence. J Ecol 101:316–324. doi:10.1111/1365-2745.12048 CrossRefGoogle Scholar
  42. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, OxfordGoogle Scholar
  43. Gilbert B, O’Connor MI (2013) Climate change and species interactions: beyond local communities. Ann N Y Acad Sci 1297:98–111. doi:10.1111/nyas.12149 PubMedGoogle Scholar
  44. Gilbert B, Tunney TD, McCann KS, DeLong JP, Vasseur DA, Savage V, Shurin JB, Dell AI, Barton BT, Harley CDG, Kharouba HM, Kratina P, Blanchard JL, Clements C, Winder M, Greig HS, O’Connor MI (2014) A bioenergetic framework for the temperature dependence of trophic interactions. Ecol Lett 17:902–914. doi:10.1111/ele.12307 PubMedCrossRefGoogle Scholar
  45. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331. doi:10.1016/j.tree.2010.03.002 PubMedCrossRefGoogle Scholar
  46. Godoy O, Levine JM (2014) Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology 95:726–736PubMedCrossRefGoogle Scholar
  47. Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14:1128–1138. doi:10.1890/03-5084 CrossRefGoogle Scholar
  48. Grassein F, Lavorel S, Till-Bottraud I (2014) The importance of biotic interactions and local adaptation for plant response to environmental changes: field evidence along an elevational gradient. Glob Chang Biol 20:1452–1460. doi:10.1111/gcb.12445 PubMedCrossRefGoogle Scholar
  49. Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31CrossRefGoogle Scholar
  50. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194. doi:10.1086/283244 CrossRefGoogle Scholar
  51. Hacker SD, Gaines SD (1997) Some implications of direct positive interactions for community species diversity. Ecology 78:1990–2003CrossRefGoogle Scholar
  52. Hargreaves AL, Samis KE, Eckert CG (2014) Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am Nat 183:157–173. doi:10.1086/674525 PubMedCrossRefGoogle Scholar
  53. He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706. doi:10.1111/ele.12080 PubMedCrossRefGoogle Scholar
  54. Hegland SJ, Nielsen A, Lázaro A, Bjerknes A-L, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195. doi:10.1111/j.1461-0248.2008.01269.x PubMedCrossRefGoogle Scholar
  55. HilleRisLambers J, Harsch MA, Ettinger AK, Ford KR, Theobald EJ (2013) How will biotic interactions influence climate change-induced range shifts? Ann N Y Acad Sci 1297:112–125. doi:10.1111/nyas.12182 PubMedGoogle Scholar
  56. Holt RD, Barfield M (2009) Trophic interactions and range limits: the diverse roles of predation. Proc R Soc B 276:1435–1442PubMedPubMedCentralCrossRefGoogle Scholar
  57. Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228CrossRefGoogle Scholar
  58. Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004) Convergence across biomes to a common rain-use efficiency. Nature 429:651–654PubMedCrossRefGoogle Scholar
  59. Huxman TE, Barron-Gafford G, Gerst KL, Angert AL, Tyler AP, Venable DL (2008) Photosynthetic resource-use efficiency and demographic variability in desert winter annual plants. Ecology 89:1554–1563. doi:10.1890/06-2080.1 PubMedCrossRefGoogle Scholar
  60. IPCC (2013) The physical science basis. Contribution of working group I to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  61. James JC, Grace J, Hoad SP (1994) Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. J Ecol 82:297–306. doi:10.2307/2261297 CrossRefGoogle Scholar
  62. Jones NT, Husband BC, MacDougall AS (2013) Reproductive system of a mixed-mating plant responds to climate perturbation by increased selfing. Proc R Soc B 280:20131336. doi: 10.1098/rspb.2013.1336
  63. Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecol Lett 9:1080–1088. doi:10.1111/j.1461-0248.2006.00953.x PubMedCrossRefGoogle Scholar
  64. Kikvidze Z, Michalet R, Brooker RW, Cavieres LA, Lortie CJ, Pugnaire FI, Callaway RM (2011) Climatic drivers of plant–plant interactions and diversity in alpine communities. Alp Bot 121:63–70. doi:10.1007/s00035-010-0085-x CrossRefGoogle Scholar
  65. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. doi:10.1038/417067a PubMedCrossRefGoogle Scholar
  66. Koehler K, Center A, Cavender-Bares J (2011) Evidence for a freezing tolerance–growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical–temperate divide. New Phytol 193:730–744PubMedCrossRefGoogle Scholar
  67. Lavergne S, Debussche M, Thompson JD (2005) Limitations on reproductive success in endemic Aquilegia viscosa (Ranunculaceae) relative to its widespread congener Aquilegia vulgaris: the interplay of herbivory and pollination. Oecologia 142:212–220. doi:10.1007/s00442-004-1721-1 PubMedCrossRefGoogle Scholar
  68. Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350. doi:10.1146/annurev-ecolsys-102209-144628 CrossRefGoogle Scholar
  69. Le Bagousse-Pinguet Y, Xiao S, Brooker RW, Gross N, Liancourt P, Straile D, Michalet R (2014) Facilitation displaces hotspots of diversity and allows communities to persist in heavily stressed and disturbed environments. J Veg Sci 25:66–76. doi:10.1111/jvs.12064 CrossRefGoogle Scholar
  70. Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461:254–257. doi:10.1038/nature08251 PubMedCrossRefGoogle Scholar
  71. Levine JM, Pachepsky E, Kendall BE, Yelenik SG, Lambers JHR (2006) Plant-soil feedbacks and invasive spread. Ecol Lett 9:1005–1014PubMedCrossRefGoogle Scholar
  72. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055. doi:10.1038/nature08649 PubMedCrossRefGoogle Scholar
  73. Loehle C (1998) Height growth rate tradeoffs determine northern and southern range limits for trees. J Biogeogr 25:735–742. doi:10.1046/j.1365-2699.1998.2540735.x CrossRefGoogle Scholar
  74. Lortie CJ, Callaway RM (2006) Re-analysis of meta-analysis: support for the stress-gradient hypothesis. J Ecol 94:7–16. doi:10.1111/j.1365-2745.2005.01066.x CrossRefGoogle Scholar
  75. Louthan AM, Doak DF, Angert AL (2015) Where and when do species interactions set range limits? Trends Ecol Evol 30:780–792. doi:10.1016/j.tree.2015.09.011 PubMedCrossRefGoogle Scholar
  76. MacArthur R (1972) Geographical ecology: patterns in the distribution of species. Harper & Row, New YorkGoogle Scholar
  77. MacDonald GM, Velichko AA, Kremenetski CV, Borisova OK, Goleva AA, Andreev AA, Cwynar LC, Riding RT, Forman SL, Edwards TWD, Aravena R, Hammarlund D, Szeicz JM, Gattaulin V (2000) Holocene treeline history and climate change across northern Eurasia. Quat Res 53:302–311. doi:10.1006/qres.1999.2123 CrossRefGoogle Scholar
  78. Maestre FT, Cortina J (2004) Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proc Biol Sci 271:S331–S333. doi:10.1098/rsbl.2004.0181 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Maestre FT, Valladares F, Reynolds JF (2005) Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J Ecol 93:748–757. doi:10.1111/j.1365-2745.2005.01017.x CrossRefGoogle Scholar
  80. Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B 273:2575–2584PubMedPubMedCentralCrossRefGoogle Scholar
  81. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717PubMedCrossRefGoogle Scholar
  82. Menge BA, Sutherland JP (1976) Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. Am. Nat. 110:351CrossRefGoogle Scholar
  83. Michalet R, Schöb C, Lortie CJ, Brooker RW, Callaway RM (2014) Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change. Funct Ecol 28:75–86CrossRefGoogle Scholar
  84. Moles AT, Bonser SP, Poore AGB, Wallis IR, Foley WJ (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388. doi:10.1111/j.1365-2435.2010.01814.x CrossRefGoogle Scholar
  85. Mordecai EA (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr 81:429–441. doi:10.1890/10-2241.1 CrossRefGoogle Scholar
  86. Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A (2008) Mechanisms of long-distance seed dispersal. Trends Ecol Evol 23:638–647PubMedCrossRefGoogle Scholar
  87. Normand S, Treier UA, Randin C, Vittoz P, Guisan A, Svenning JC (2009) Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. Glob Ecol Biogeogr 18:437–449. doi:10.1111/j.1466-8238.2009.00451.x CrossRefGoogle Scholar
  88. Novoplansky A, Goldberg DE (2001) Effects of water pulsing on individual performance and competitive hierarchies in plants. J Veg Sci 12:199–208. doi:10.2307/3236604 CrossRefGoogle Scholar
  89. Pajunen AM, Oksanen J, Virtanen R (2011) Impact of shrub canopies on understorey vegetation in western Eurasian tundra. J Veg Sci 22:837–846. doi:10.1111/j.1654-1103.2011.01285.x CrossRefGoogle Scholar
  90. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  91. Pianka E (1966) Latitudinal gradients in species diversity: a review of concepts. Am Nat 100:33–46CrossRefGoogle Scholar
  92. Potter CS, Brooks V (1998) Global analysis of empirical relations between annual climate and seasonality of NDVI. Int J Remote Sens 19:2921–2948. doi:10.1080/014311698214352 CrossRefGoogle Scholar
  93. Price TD, Kirkpatrick M (2009) Evolutionarily stable range limits set by interspecific competition. Proc R Soc B 276:1429–1434. doi:10.1098/rspb.2008.1199 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715CrossRefGoogle Scholar
  95. Reid C (1899) The origin of the British flora. Dulau, LondonCrossRefGoogle Scholar
  96. Richardson PJ, MacDougall AS, Stanley AG, Kaye TN, Dunwiddie PW (2012) Inversion of plant dominance–diversity relationships along a latitudinal stress gradient. Ecology 93:1431–1438PubMedCrossRefGoogle Scholar
  97. Salazar D, Marquis RJ (2012) Herbivore pressure increases toward the equator. Proc Natl Acad Sci 109:12616–12620PubMedPubMedCentralCrossRefGoogle Scholar
  98. Scheidel U, Bruelheide H (1999) Selective slug grazing on montane meadow plants. J Ecol 87:828–838. doi:10.1046/j.1365-2745.1999.00402.x CrossRefGoogle Scholar
  99. Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–269. doi:10.1146/annurev.ecolsys.39.110707.173430 CrossRefGoogle Scholar
  100. Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048. doi:10.1126/science.247.4946.1043 PubMedCrossRefGoogle Scholar
  101. Schöb C, Armas C, Guler M, Prieto I, Pugnaire FI (2013) Variability in functional traits mediates plant interactions along stress gradients. J Ecol 101:753–762CrossRefGoogle Scholar
  102. Schultz PA, Halpert MS (1993) Global correlation of temperature, NDVI and precipitation. Adv Sp Res 13:277–280. doi:10.1016/0273-1177(93)90559-T CrossRefGoogle Scholar
  103. Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436. doi:10.1146/annurev.ecolsys.110308.120317 CrossRefGoogle Scholar
  104. Shemske D (2009) Speciation and patterns of diversity. Cambridge University Press, CambridgeGoogle Scholar
  105. Siepielski AM, McPeek MA (2010) On the evidence for species coexistence: a critique of the coexistence program. Ecology 91:3153–3164. doi:10.1890/10-0154.1 PubMedCrossRefGoogle Scholar
  106. Spasojevic MJ, Harrison S, Day HW, Southard RJ (2014) Above- and belowground biotic interactions facilitate relocation of plants into cooler environments. Ecol Lett 17:700–709. doi:10.1111/ele.12272 PubMedCrossRefGoogle Scholar
  107. Svenning JC, Gravel D, Holt RD, Schurr FM, Thuiller W, Münkemüller T, Schiffers KH, Dullinger S, Edwards TC, Hickler T, Higgins SI, Nabel JEMS, Pagel J, Normand S (2014) The influence of interspecific interactions on species range expansion rates. Ecography (Cop) 37:1198–1209CrossRefGoogle Scholar
  108. Taniguchi Y, Nakano S (2000) Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology 81:2027–2039CrossRefGoogle Scholar
  109. Urban MC, Tewksbury JJ, Sheldon KS (2012) On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc R Soc B 279:2072–2080. doi:10.1098/rspb.2011.2367 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Urban MC, Zarnetske PL, Skelly DK (2013) Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann N Y Acad Sci 1297:44–60PubMedGoogle Scholar
  111. Van Grunsven RHA, Van der Putten WH, Bezemer TM, Tamis WLM, Berendse F, Veenendaal EM (2007) Reduced plant-soil feedback of plant species expanding their range as compared to natives. J Ecol 95:1050–1057. doi:10.1111/j.1365-2745.2007.01282.x CrossRefGoogle Scholar
  112. Van Grunsven RH, Van Der Putten WH, Martijn Bezemer T, Berendse F, Veenendaal EM (2010) Plant-soil interactions in the expansion and native range of a poleward shifting plant species. Glob Chang Biol 16:380–385. doi:10.1111/j.1365-2486.2009.01996.x CrossRefGoogle Scholar
  113. Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, Savage V, Tunney TD, O’Connor MI (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B 281:20132612. doi:10.1098/rspb.2013.2612 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vellend M, Myers JA, Gardescu S, Marks PL (2003) Dispersal of trillium seeds by deer: implications for long-distance migration of forest herbs. Ecology 84:1067–1072CrossRefGoogle Scholar
  115. Vellend M, Knight TM, Drake JM (2006) Antagonistic effects of seed dispersal and herbivory on plant migration. Ecol Lett 9:319–326PubMedCrossRefGoogle Scholar
  116. Venable DL (2007) Bet hedging in a guild of desert annuals. Ecology 88:1086–1090PubMedCrossRefGoogle Scholar
  117. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346. doi:10.1073/pnas.0503198103 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Webb SL (1986) Potential role of passenger pigeons and other vertebrates in the rapid Holocene migrations of nut trees. Quat Res 26:367–375CrossRefGoogle Scholar
  119. Weber A, Karst J, Gilbert B, Kimmins JP (2005) Thuja plicata exclusion in ectomycorrhiza-dominated forests: testing the role of inoculum potential of arbuscular mycorrhizal fungi. Oecologia 143:148–156. doi:10.1007/s00442-004-1777-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoCanada

Personalised recommendations