Nitrogen fertilization interacts with light to increase Rubus spp. cover in a temperate forest

Abstract

Nitrogen additions have caused species composition changes in many ecosystems by facilitating the growth of nitrophilic species. After 24 years of nitrogen fertilization in a 40 year-old stand at the Fernow Experimental Forest (FEF) in Central Appalachia, USA, the cover of Rubus spp. has increased from 1 to 19 % of total herbaceous-layer cover. While Rubus spp. are generally associated with high-light conditions that are created after a disturbance event, some species are also known to be nitrophilic. We investigated whether the increase in cover in Rubus spp. was due to either nitrogen, light, or an interaction between these two factors. To test for the effect of nitrogen and light on Rubus spp. cover, we compared the relative cover of Rubus spp. among fertilized and unfertilized watersheds and among fertilized and unfertilized experimental plots, using estimates of canopy openness as a covariate. Rubus spp. plants were also grown ex situ in a field experiment using a 2-way factorial design, measuring leaf area, and using two levels of nitrogen and three levels of light. The effect of nitrogen fertilization on relative Rubus spp. cover depended on canopy openness in the watersheds (F = 17.57, p = 0.0002) and experimental plots (F = 25.04, p = 0.0047). A similar effect for leaf area was also observed among plants grown in the field experiment (F = 4.12, p = 0.0247). Our results confirm that, although Rubus spp. at FEF are nitrophilic, they require sufficient light to increase their cover. Furthermore, the dominance of Rubus spp. in the herbaceous layer likely contributes to the observed decline in species diversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abrams MD, Orwig DA, Demeo TE (1995) Dendroecological analysis of successional dynamics for a presettlement-origin white-pine mixed-oak forest in the southern Appalachians, USA. J Ecol 83:123–133

    Article  Google Scholar 

  2. Adams MB (2004) Description of the Fork Mountain long-term soil productivity study: site characterization. UDSA Forest Service Technical Report NE-323

  3. Adams MB, DeWalle DR, Hom JL (2006) The Fernow watershed acidification study. Springer, Dordrecht

    Book  Google Scholar 

  4. Baeten L, Vanhellemont M, De Frenne P, De Schrijver A, Hermy M, Verheyen K (2010) Plasticity in response to phosphorus and light availability in four forest herbs. Oecologia 163:1021–1032. doi:10.1007/s00442-010-1599-z

    Article  PubMed  Google Scholar 

  5. Balandier P, Marquier A, Casella E, Kiewitt A, Coll L, Wehrlen L, Harmer R (2013) Architecture, cover and light interception by bramble (Rubus fruticosus): a common understorey weed in temperate forests. Forestry 86:39–46. doi:10.1093/forestry/cps066

    Article  Google Scholar 

  6. Beatty SW (2014) Habitat heterogeneity and maintenance of species in understory communities. In: Gilliam FS (ed) The herbaceous layer of forests in eastern North America, 2nd edn. Oxford University Press, New York

    Google Scholar 

  7. Becker P, Erhart DW, Smith AP (1989) Analysis of forest light environments 1. Computerized estimation of solar-radiation from hemispherical canopy photographs. Agric For Meteorol 44:217–232. doi:10.1016/0168-1923(89)90018-X

    Article  Google Scholar 

  8. Brandrud TE, Timmermann V (1998) Ectomycorrhizal fungi in the NITREX site at Gardsjon, Sweden; below and above-ground responses to experimentally-changed nitrogen inputs 1990–1995. Forest Ecol Manag 101:207–214. doi:10.1016/S0378-1127(97)00138-2

    Article  Google Scholar 

  9. Brunet J, Diekmann M, Falkengren-Grerup U (1998) Effects of nitrogen deposition on field layer vegetation in south Swedish oak forests. Environ Pollut 102:35–40. doi:10.1016/S0269-7491(98)80012-2

    CAS  Article  Google Scholar 

  10. Cassidy TM, Fownes JH, Harrington RA (2004) Nitrogen limits an invasive perennial shrub in forest understory. Biol Invasions 6:113–121. doi:10.1023/B:Binv.0000010128.44332.0f

    Article  Google Scholar 

  11. Clark CM et al (2007) Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol Lett 10:596–607. doi:10.1111/j.1461-0248.2007.01053.x

    Article  PubMed  Google Scholar 

  12. Cleland EE et al (2008) Species responses to nitrogen fertilization in herbaceous plant communities, and associated species traits. Ecology 89:1175. doi:10.1890/07-1104.1

    Article  Google Scholar 

  13. Compton JE, Watrud LS, Porteous LA, DeGrood S (2004) Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. For Ecol Manag 196:143–158. doi:10.1016/j.foreco.2004.03.017

    Article  Google Scholar 

  14. Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70:171–207

    Article  Google Scholar 

  15. Craine JM (2009) The resource strategies of wild plants. Princeton University Press, Princeton

    Book  Google Scholar 

  16. De Schrijver A, De Frenne P, Ampoorter E, Van Nevel L, Demey A, Wuyts K, Verheyen K (2011) Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob Ecol Biogeogr 20:803–816. doi:10.1111/J.1466-8238.2011.00652.X

    Article  Google Scholar 

  17. Dirnböck T et al (2014) Forest floor vegetation response to nitrogen deposition in Europe. Glob Change Biol 20:429–440. doi:10.1111/gcb.12440

    Article  Google Scholar 

  18. Edwards PJ, Williard KWJ, Wood F, Sharpe WE (2006) Soil water and stream water chemical processes. In: Adams MB, DeWalle DR, Hom JL (eds) The Fernow watershed acidification study. Springer, Netherlands, pp 71–136

    Chapter  Google Scholar 

  19. Eickmeier WG, Schussler EE (1993) Responses of the spring ephemeral Claytonia virginica L to light and nutrient manipulations and implications for the vernal-dam hypothesis. Bull Torrey Bot Club 120:157–165. doi:10.2307/2996945

    Article  Google Scholar 

  20. Eilts JA, Mittelbach GG, Reynolds HL, Gross KL (2011) Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities. Am Nat 177:574–588. doi:10.1086/659633

    Article  PubMed  Google Scholar 

  21. Evans J (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi:10.1007/BF00377192

    Article  Google Scholar 

  22. Falkengrengrerup U (1993) Effects on beech forest species of experimentally enhanced nitrogen deposition. Flora 188:85–91

    Google Scholar 

  23. Field CD et al (2014) The role of nitrogen deposition in widespread plant community change across semi-natural habitats. Ecosystems 17:864–877. doi:10.1007/s10021-014-9765-5

    CAS  Article  Google Scholar 

  24. Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J Ecol 94:1176–1191. doi:10.1111/J.1365-2745.2006.01155.X

    CAS  Article  Google Scholar 

  25. Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57:845–858. doi:10.1641/B571007

    Article  Google Scholar 

  26. Gilliam FS, Roberts MR (2014) The herbaceous layer in forests of eastern North America, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  27. Gilliam FS, Welch NT, Phillips AH, Billmyer JH, Peterjohn WT, Fowler ZK, Walter CA, Burnham MB, May JD, Adams MB (in press) Twenty-five year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere

  28. Grime JP (1979) Plant strategies and vegetation progress. Wiley, New York

    Google Scholar 

  29. Hedwall PO, Nordin A, Brunet J, Bergh J (2010) Compositional changes of forest-floor vegetation in young stands of Norway spruce as an effect of repeated fertilisation. For Ecol Manag 259:2418–2425. doi:10.1016/j.foreco.2010.03.018

    Article  Google Scholar 

  30. Hedwall PO, Strengbom J, Nordin A (2013) Can thinning alleviate negative effects of fertilization on boreal forest floor vegetation? For Ecol Manag 310:382–392. doi:10.1016/j.foreco.2013.08.040

    Article  Google Scholar 

  31. Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s indicator values for British Plants, vol 2a. Technical Annex, Great Britain

  32. Hughes JW, Fahey TJ (1991) Colonization dynamics of herbs and shrubs in a disturbed northern hardwood forest. J Ecol 79:605–616. doi:10.2307/2260656

    Article  Google Scholar 

  33. Jobidon R (1993) Nitrate fertilization stimulates emergence of red raspberry (Rubus idaeus L) under forest canopy. Fertil Res 36:91–94. doi:10.1007/Bf00749952

    Article  Google Scholar 

  34. Jobidon R, Thibault JR, Fortin JA (1989) Phytotoxic effect of barley, oat, and wheat-straw mulches in eastern Quebec forest plantations 1. Effects on red raspberry (Rubus idaeus). For Ecol Manag 29:277–294. doi:10.1016/0378-1127(89)90099-6

    Article  Google Scholar 

  35. Johnson CM, Stout PR, Boyer TC, Carlton AB (1957) Comparative chlorine requirements of different plant species. Plant Soil 8:337–353

    CAS  Article  Google Scholar 

  36. Kellner O (1993) Effects on associated flora of silvicultural nitrogen-fertilization repeated at long intervals. J Appl Ecol 30:563–574. doi:10.2307/2404195

    Article  Google Scholar 

  37. Kochenderfer JN (2006) Fernow and the Appalachian hardwood region. In: Adams MB, DeWalle DR, Hom JL (eds) The Fernow watershed acidification study. Springer, Dordrecht, pp 17–39

    Chapter  Google Scholar 

  38. Landhausser SM, Stadt KJ, Lieffers VJ (1997) Photosynthetic strategies of summergreen and evergreen understory herbs of the boreal mixedwood forest. Oecologia 112:173–178. doi:10.1007/s004420050297

    Article  Google Scholar 

  39. Magill AH et al (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manag 196:7–28. doi:10.1016/J.Foreco.2004.03.033

    Article  Google Scholar 

  40. McCarthy BC, Robison SA (2003) Canopy openness, understory light environments, and oak regeneration. In: Sutherland EK, Hutchinson TF (eds) Characteristics of mixed-oak forest ecosystems in Southern Ohio prior to the reintroduction of fire. Gen. Tech. Rep. NE-299. USDA Forest Service, Newtown Square, pp 57–66

  41. Mitchell CE, Reich PB, Tilman D, Groth JV (2003) Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Glob Change Biol 9:438–451. doi:10.1046/j.1365-2486.2003.00602.x

    Article  Google Scholar 

  42. Neufeld HS, Young DR (2014) Ecophysiology of the herbaceous layer in temperate deciduous forests. In: Gilliam FS (ed) The herbaceous layer in forests of eastern North America, 2nd edn. Oxford University Press, New York, pp 34–39

    Google Scholar 

  43. Newman EI (1973) Competition and diversity in herbaceous vegetation. Nature 244:310

    Article  Google Scholar 

  44. Peterson CJ, Carson WP (1996) Generalizing forest regeneration models: the dependence of propagule availability on disturbance history and stand size. Can J For Res 26:45–52. doi:10.1139/X26-005

    Article  Google Scholar 

  45. Peterson CJ, Pickett STA (1995) Forest reorganization—a case-study in an old-growth forest catastrophic blowdown. Ecology 76:763–774. doi:10.2307/1939342

    Article  Google Scholar 

  46. Phillippe LR et al (2010) Vegetation of Hooper Branch Nature Preserve, Iroquois County, Illinois. Natuarlist 17:261–272. doi:10.1656/045.017.0209

    Google Scholar 

  47. Phoenix GK et al (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Change Biol 18:1197–1215. doi:10.1111/J.1365-2486.2011.02590.X

    Article  Google Scholar 

  48. Rajaniemi TK (2002) Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. J Ecol 90:316–324. doi:10.1046/j.1365-2745.2001.00662.x

    Article  Google Scholar 

  49. Rich PM (1990) Characterizing plant canopies with hemispherical photographs. Remote Sensing Rev 5:13–29

    Article  Google Scholar 

  50. Rodriguez-Garcia E, Bravo F (2013) Plasticity in Pinus pinaster populations of diverse origins: comparative seedling responses to light and nitrogen availability. For Ecol Manag 307:196–205. doi:10.1016/j.foreco.2013.06.046

    Article  Google Scholar 

  51. Sadhu MK (1989) Plant propagation. New Age International Publishers, New Delhi

    Google Scholar 

  52. SAS Institute I (2013) JMP, Version 11. Cary, NC

  53. Saville DJ (1990) Multiple comparison procedures—the practical solution. Am Stat 44:174–180. doi:10.2307/2684163

    Google Scholar 

  54. Small CJ, McCarthy BC (2003) Spatial and temporal variability of herbaceous vegetation in an eastern deciduous forest. Plant Ecol 164:37–48. doi:10.2307/20146339

    Article  Google Scholar 

  55. Southon GE, Field C, Caporn SJM, Britton AJ, Power SA (2013) Nitrogen deposition reduces plant diversity and alters ecosystem functioning: field-scale evidence from a nationwide survey of UK heathlands. PLoS One 8:1–12. doi:10.1371/journal.pone.0059031

    Google Scholar 

  56. Strengbom J, Nordin A (2012) Physical disturbance determines effects from nitrogen addition on ground vegetation in boreal coniferous forests. J Veg Sci 23:361–371. doi:10.1111/j.1654-1103.2011.01359.x

    Article  Google Scholar 

  57. Strengbom J, Nordin A, Nasholm T, Ericson L (2002) Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. J Ecol 90:61–67. doi:10.1046/j.0022-0477.2001.00629.x

    Article  Google Scholar 

  58. Suding KN et al (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392. doi:10.1073/Pnas.0408648102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Thomas SC, Halpern CB, Falk DA, Liguori DA, Austin KA (1999) Plant diversity in managed forests: understory responses to thinning and fertilization. Ecol Appl 9:864–879

    Article  Google Scholar 

  60. Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems 7:109–133. doi:10.1007/s10021-003-0225-x

    CAS  Article  Google Scholar 

  61. Vitousek PM, Melillo JM (1979) Nitrate losses from disturbed forests—patterns and mechanisms. For Sci 25:605–619

    Google Scholar 

  62. Walter CW, Burnham MB, Gilliam FS, Peterjohn WT (2015) A reference-based approach for estimating leaf area and cover in the forest herbaceous layer. Environ Monit Assess 187:1–9

    Article  Google Scholar 

  63. Walters MB, Reich PB (1997) Growth of Acer saccharum seedlings in deeply shaded understories of northern Wisconsin: effects of nitrogen and water availability. Can J For Res 27:237–247. doi:10.1139/cjfr-27-2-237

    Article  Google Scholar 

  64. Wilson SD, Tilman D (1991) Components of plant competition along an experimental gradient of nitrogen availability. Ecology 72:1050–1065. doi:10.2307/1940605

    Article  Google Scholar 

  65. Wintle BC, Fidler F, Vesk PA, Moore JL (2013) Improving visual estimation through active feedback. Methods Ecol Evol 4:53–62. doi:10.1111/j.2041-210x.2012.00254.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Rachel Arrick, Bobby Clemer, Jessica Graham, Joe Hilgenberg, Lily Hill, Justin Lego, and Hoff Lindberg for helping with field and farm excursions. We are grateful to Jen Chandler, Jessi Brie Turner, and Jim McGraw for their insightful comments and suggestions in writing this manuscript. Funding for this research was provided by the National Science Foundation from their Long-Term Research in Environmental Biology program (Grant Nos. DEB-0417678 and DEB-1019522) and their Research Experience for Undergraduates program (Grant No. DBI-0849917), as well as the West Virginia University Eberly College of Arts and Sciences and the David Blaydes Scholarship. Finally, special thanks to the staff of the Fernow Experimental Forest, past and present, for the foresight to begin and maintain long-term ecological research in central Appalachia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Walter.

Additional information

Communicated by Thomas A. Nagel.

Appendix 1: The concentrations of chemical constituents used in the nutrient solution applied to Rubus plants grown in the field experiment, modified from Johnson et al. (1957)

Appendix 1: The concentrations of chemical constituents used in the nutrient solution applied to Rubus plants grown in the field experiment, modified from Johnson et al. (1957)

Constituent Concentration (μM)
KNO3 50
Ca(NO3)2·4H2O 25
NH4NO3 50
KH2PO4 6.25
MgSO4·7H2O 12.5
KCl 20
H3BO3 25
MnSO4·H2O 2
ZnSO4·7H2O 2
CuSO4·5H2O 0.5
Na2MoO4 0.5
CoCl2·6H2O 0.5
C10H12N2NaFeO8 20

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walter, C.A., Raiff, D.T., Burnham, M.B. et al. Nitrogen fertilization interacts with light to increase Rubus spp. cover in a temperate forest. Plant Ecol 217, 421–430 (2016). https://doi.org/10.1007/s11258-016-0583-z

Download citation

Keywords

  • Nitrogen deposition
  • Herbaceous layer
  • Fertilization
  • Forest understory
  • Rubus
  • Bramble