Skip to main content

Coexistence and niche differentiation at large spatial scale in a West-European softwater plant community

Abstract

There is growing evidence that species are able to coexist in communities through niche separation, and that consistent community structuring can take place at the biogeographical scale, as the same biotic interactions can determine species’ fate at large scales. In this study, we document niche differentiation at a larger scale within a specific plant community of softwater lakes in Western Europe. Five species were selected for their relative frequency and wide geographical distribution within the dataset that we collected. Their niches were modelled both from presence–absence data and from ordinal abundance data, using mixed regression techniques (generalized linear mixed models and proportional odds mixed models, respectively). The modelled realized niches differed among the species on the West-European scale, although strict separation was not shown and geographical coverage is not complete. Plant strategy characterization of the species supported the assumption that functional traits underpin the niche differentiation among the species through fitness trade-offs. Mechanistic experimental research at a range of spatial scales is needed to test the importance of different community structuring mechanisms at the biogeographical scale, such as biotic interactions and environmental filtering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

GLMM:

Generalized linear mixed model

POMM:

Proportional odds mixed model

VIF:

Variance inflation factor

References

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis: spatial coexistence mechanisms. Ecol Lett 6:1109–1122. doi:10.1046/j.1461-0248.2003.00530.x

    Article  Google Scholar 

  • Arts GH (2002) Deterioration of Atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquat Bot 73:373–393

    CAS  Article  Google Scholar 

  • Arts GHP, Den Hartog C (1990) Phytogeographical aspects of the west European soft-water macrophyte flora. Acta Bot Neerlandica 39:369–378

    Article  Google Scholar 

  • Austin MP (1990) Community theory and competition in vegetation. In: Grace JB, Tilman D (eds) Perspectives on plant competition. The Blackburn Press, Caldwell, pp 215–238

    Google Scholar 

  • Austin MP (1999) A silent clash of paradigms: some inconsistencies in community ecology. Oikos 86:170–178

    Article  Google Scholar 

  • Austin MP (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19. doi:10.1016/j.ecolmodel.2006.07.005

    Article  Google Scholar 

  • Austin M, Smith T (1989) A new model for the continuum concept. Vegetatio 83:35–47. doi:10.1007/BF00031679

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-42

  • Bloemendaal FHJL, Roelofs JGM (1988) Waterplanten en waterkwaliteit. Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht

    Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    CAS  Article  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  • Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14

    CAS  Article  Google Scholar 

  • Brouwer E, Bobbink R, Roelofs JG (2002) Restoration of aquatic macrophyte vegetation in acidified and eutrophied softwater lakes: an overview. Aquat Bot 73:405–431

    CAS  Article  Google Scholar 

  • Canty A, Ripley B (2012) boot: Bootstrap R (S-Plus) Functions. R package version 1.3-4

  • Christensen RHB (2012) ordinal—regression models for ordinal data. R package version 2012.01-19

  • Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291:864–868

    CAS  Article  PubMed  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dierssen K (1975) Littorelletea uniflorae. J. Cramer, Vaduz

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. doi:10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • European Commission (2007) Interpretation manual of European Union habitats

  • Fitter A (1978) An atlas of the wild flowers of Britain and Northern Europe. Collins, London

    Google Scholar 

  • Franklin J, Miller JA (2009) Mapping species distributions. Spatial inference and prediction. Cambridge University Press, New York

    Google Scholar 

  • Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243

    Article  Google Scholar 

  • Ginzburg LR, Jensen CXJ (2004) Rules of thumb for judging ecological theories. Trends Ecol Evol 19:121–126. doi:10.1016/j.tree.2003.11.004

    Article  PubMed  Google Scholar 

  • Gonzalez R, Nelson TO (1996) Measuring ordinal association in situations that contain tied scores. Psychol Bull 119:159

    CAS  Article  PubMed  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Grime JP (1988) Comparative plant ecology. A functional approach to common British species. Unit Comparative Plant Ecology (NERC), Department of Plant Science, University of Sheffield, Sheffield

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Guisan A, Harrell FE (2000) Ordinal response regression models in ecology. J Veg Sci 11:617–626

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Book  Google Scholar 

  • Harrell FE, with contributions from many other users (2012) Hmisc: Harrell Miscellaneous. R package version 3.9-3

  • Hartley S, Kunin WE (2003) Scale dependency of rarity, extinction risk, and conservation priority. Conserv Biol 17:1559–1570

    Article  Google Scholar 

  • Heegaard E (2002) The outer border and central border for species–environmental relationships estimated by non-parametric generalised additive models. Ecol Model 157:131–139

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410

    Article  Google Scholar 

  • Hultén E, Fries M (1986) Atlas of the North European vascular plants: north of the Tropic of Cancer. Koeltz, Königstein

    Google Scholar 

  • Hutchinson HE (1957) Concluding Remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890. doi:10.1111/j.1472-4642.2008.00496.x

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108. doi:10.1016/j.tree.2003.10.013

    Article  PubMed  Google Scholar 

  • Kautsky L (1988) Life strategies of aquatic soft bottom macrophytes. Oikos 53:126–135

    Article  Google Scholar 

  • Keddy PA (1989) Competition. Chapman & Hall, London

    Book  Google Scholar 

  • Keddy PA (2001) Competition, 2nd edn. Kluwer, Dordrecht

    Book  Google Scholar 

  • Keddy PA, Twolanstrutt L, Wisheu IC (1994) Competitive effect and response rankings in 20 wetland plants—are they consistent across 3 environments. J Ecol 82:635–643

    Article  Google Scholar 

  • Keddy P, Gaudet C, Fraser LH (2000) Effects of low and high nutrients on the competitive hierarchy of 26 shoreline plants. J Ecol 88:413–423

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274. doi:10.1111/j.1365-2745.2008.01430.x

    Article  Google Scholar 

  • Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7:69–80

    Article  Google Scholar 

  • Knevel IC, Bekker RM, Bakker JP, Kleyer M (2003) Life-history traits of the northwest European flora: the LEDA database. J Veg Sci 14:611–614

    Article  Google Scholar 

  • Kunin WE (1998) Extrapolating species abundance across spatial scales. Science 281:1513–1515

    CAS  Article  PubMed  Google Scholar 

  • Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14:89–136. doi:10.1139/a06-001

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology: the metacommunity concept. Ecol Lett 7:601–613. doi:10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461:254–257. doi:10.1038/nature08251

    CAS  Article  PubMed  Google Scholar 

  • Londo G (1984) The decimal scale for relevés of permanent quadrats. In: Knapp R (ed) Sampling methods and taxon analysis in vegetation science. Dr. W. Junk Publishers, The Hague, pp 45–49

    Google Scholar 

  • Lucassen ECHE, Bobbink R, Oonk MMA, Brandrud TE, Roelofs JGM (1999) The effects of liming and reacidification on the growth of Juncus bulbosus: a mesocosm experiment. Aquat Bot 64:95–103

    Article  Google Scholar 

  • Maillette L, Keddy PA (1989) 2 plants with contrasting architectures—growth responses to light gradients. Can J Bot 67:2825–2828

    Article  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    CAS  Article  PubMed  Google Scholar 

  • Miller TE, Burns JH, Munguia P, Walters EL, Kneitel JM, Richards PM, Mouquet N, Buckley HL (2005) A critical review of twenty years’ use of the resource-ratio theory. Am Nat 165:439–448

    Article  PubMed  Google Scholar 

  • Mouquet N, Loreau M (2002) Coexistence in metacommunities: the regional similarity hypothesis. Am Nat 159:420–426

    Article  PubMed  Google Scholar 

  • Mueller-Dombois M, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Murphy KJ (2002) Plant communities and plant diversity in softwater lakes of northern Europe. Aquat Bot 73:287–324

    Article  Google Scholar 

  • Murphy KJ, Rørslett B, Springuel I (1990) Strategy analysis of submerged lake macrophyte communities—an international example. Aquat Bot 36:303–323

    Article  Google Scholar 

  • Pietsch W (1977) Beitrag zur Soziologie und Ökologie der europäischen Littorelletea- und Utricularietea-Gesellschaften. Feddes Repert 88:141–245

    Article  Google Scholar 

  • Pietsch W (1985) Chorologische Phänomene in Wasserpflanzengesellschaften Mitteleuropas. Vegetatio 59:97–109

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Raudenbusch SW, Bryk AS (2002) Hierarchical linear models: applications and data analysis methods, 2nd edn. Sage, Newbury Park

    Google Scholar 

  • Rodriguez-Oubina J, Romero MI, Ortiz S (1997) Communities of the class Littorelletea uniflorae in the northwest Iberian Peninsula. Acta Bot Gallica 144:155–169

    Article  Google Scholar 

  • Roelofs JGM, Bobbink R, Brouwer E, de Graaf MCC (1996) Restoration ecology of aquatic and terrestrial vegetation on non-calcareous sandy soils in The Netherlands. Acta Bot Neerlandica 45:517–541

    Article  Google Scholar 

  • Rørslett B (1989) An integrated approach to hydropower impact assessment 2. Submerged macrophytes in some Norwegian hydroelectric lakes. Hydrobiologia 175:65–82

    Article  Google Scholar 

  • Rösch H, Van Rooyen MW, Theron GK (1997) Predicting competitive interactions between pioneer plant species by using plant traits. S Afr J Bot 8:489–494

    Google Scholar 

  • Schaminée JHJ, Westhoff V, Arts GHP (1992) Die Strandlinggesellschaften (Littorelletea Br.-Bl. et Tx. 43) der Niederlande, in europäischem Rahmen gefasst. Phytocoenologia 20:529–558

    Article  Google Scholar 

  • Schoof-van Pelt MM (1973) Littorelletea: a study of the vegetation of some amphiphytic communities of western Europe. PhD Thesis, Katholieke Universiteit Nijmegen, Nijmegen

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi:10.1016/j.tree.2004.09.003

    Article  Google Scholar 

  • Smolders AJP, Lucassen E, Roelofs JGM (2002) The isoetid environment: biogeochemistry and threats. Aquat Bot 73:325–350

    CAS  Article  Google Scholar 

  • Szmeja J, Clément B (1990) Comparaison de la structure et du déterminisme des Littorelletea uniflorae en Poméranie (Pologne) et en Bretagne (France). Phytocoenologia 19:123–148

    Article  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152. doi:10.1016/j.ppees.2007.09.004

    Article  Google Scholar 

  • Thuiller W, Albert CH, Dubuis A, Randin C, Guisan A (2010) Variation in habitat suitability does not always relate to variation in species’ plant functional traits. Biol Lett 6:120–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci USA 101:10854–10861

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Vanderhaeghe F, Smolders AJP, Ruysschaert S, Roelofs JGM, Hoffmann M (2005) Understanding the realised niche of an amphibious softwater plant, Eleocharis multicaulis. Arch Für Hydrobiol 163:329–348. doi:10.1127/0003-9136/2005/0163-0329

    CAS  Article  Google Scholar 

  • Vanderhaeghe F, Smolders AJP, Roelofs JGM, Hoffmann M (2013) Water table and species identity outweigh carbon and nitrogen availability in a softwater plant community. Acta Oecol 47:57–67. doi:10.1016/j.actao.2012.09.001

    Article  Google Scholar 

  • Vaughan IP, Ormerod SJ (2005) The continuing challenges of testing species distribution models. J Appl Ecol 42:720–730. doi:10.1111/j.1365-2664.2005.01052.x

    Article  Google Scholar 

  • Venterink HO, Güsewell S (2010) Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation: competition under N and P limitation. Funct Ecol 24:877–886. doi:10.1111/j.1365-2435.2010.01692.x

    Article  Google Scholar 

  • Verbyla D, Litvaitis J (1989) Resampling methods for evaluating classification accuracy of wildlife habitat models. Environ Manag 13:783–787. doi:10.1007/BF01868317

    Article  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    CAS  Article  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268. doi:10.1016/j.tree.2006.02.004

    Article  PubMed  Google Scholar 

  • Wetzel RG (2001) Limnology. Lake and River Ecosystems. Academic Press, London

    Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Willby NJ, Abernethy VJ, Demars BOL (2000) Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshw Biol 43:43–74

    Article  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes J-A, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson M-C, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning J-C (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30. doi:10.1111/j.1469-185X.2012.00235.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are very grateful to the many scientists, colleagues and friends who helped in finding appropriate sampling locations. We especially mention (in alphabetical order) C. Aguiar, G.H.P. Arts, F. Bioret, D. Boeye, A.M. Darwell, G. De Blust, J. Dirkx, I. Edgar & family, L. Gora, J. Jansen, R.A. Jones, J.A. Molina, F. Pinet, K. Rombouts, K. Urban, J. van Groenendael, W. Van Landuyt and L. van Tweel-Groot. We are grateful to two anonymous reviewers for their helpful comments. We further thank the owners and nature managers that gave access to the sampled softwater lakes. We thank J. Eygensteyn, R. Steeno and J. Bernaerts for their advice when doing the chemical analyses. The first author did part of this work as Ph.D. fellow of the Research Foundation – Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floris Vanderhaeghe.

Additional information

Communicated by Anne Bonis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 521 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanderhaeghe, F., Ruysschaert, S., van den Berg, L.J.L. et al. Coexistence and niche differentiation at large spatial scale in a West-European softwater plant community. Plant Ecol 217, 369–382 (2016). https://doi.org/10.1007/s11258-016-0579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0579-8

Keywords

  • Softwater lake
  • Resource partitioning
  • Habitat 3130
  • Proportional odds models
  • Generalized linear mixed models
  • Species distribution models