Skip to main content

Relative contribution of niche and neutral processes on tree species turnover across scales in seasonal forests of NW Argentina

Abstract

Environmental heterogeneity and dispersal limitation influence tree species distribution, but their relative contributions change with the spatial scale of analysis. We analyzed tree species turnover using twenty 1-ha permanent plots to quantify variation in floristic similarity explained by environmental factors and geographical distance at regional (among plots) and local (within plots) scales in seasonal premontane forests of northwestern Argentina. We related floristic similarity (Bray–Curtis) with environmental variation and geographical distance using specific regression models (regression of distance matrix and mixed-effects models at regional and local scales, respectively). Floristic similarity decreased with distance at both spatial scales but its relative contribution was significant only at the regional scale (18 and <1 % at regional and local scale, respectively). Dispersal limitation may be a relevant process at biogeographical scale where dispersion at large distances become infrequent for some species. In addition, we identified that regional climatic and topographic gradients and local edaphic variation contribute to explain floristic similarity across scales in seasonal premontane forests. Environmental heterogeneity explained about the same variance in floristic similarity at regional and local scales (7 and 8 %, respectively). We conclude that quantitative aspects of floristic patterns, such as the relative contribution of niche and neutral processes to explain species distribution, can strengthen conservation strategies at different spatial scales, and therefore could be a useful tool in conservation planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Baldeck CA, Harms KE, Yavitt JB et al (2012) Soil resources and topography shape local tree community structure in tropical forests. Proc R Soc B 280:201–225

    Article  Google Scholar 

  • Bianchi AR, Elena H, Volante S (2008) SIG climático del NOA. INTA, Salta

    Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kappelle M, Brown AD (eds) Bosques nublados del Neotrópico. INBio, San José, pp 623–659

    Google Scholar 

  • Cabrera A, Willink A (1980) Biogeografía de América Latina, 2nd edn. OEA, Washington DC

    Google Scholar 

  • Chase JM (2005) Toward a really unified theory for metacommunities. Funct Ecol 19:182–186

    Article  Google Scholar 

  • Chave J, Muller-Landau HC, Levin SA (2002) Comparing classical community models: theoretical consequences for patterns of diversity. Am Nat 159:1–23

    Article  PubMed  Google Scholar 

  • Clark D, Palmer M, Clark D (1999) Edaphic factors and the landscape-scale distribution of tropical rain forest trees. Ecology 80:2662–2675

    Article  Google Scholar 

  • Condit R, Pitman N, Leigh EG Jr et al (2002) Beta-diversity in tropical forest trees. Science 295:666–669

    CAS  Article  PubMed  Google Scholar 

  • Gilbert B, Lechowicz MJ (2004) Neutrality, niche and dispersal in a temperate forest understory. PNAS 101:7651–7656

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Grau H, Veblen T (2000) Rainfall variability, fire and vegetation dynamics in neotropical montane ecosystems in north-western Argentina. J Biogeogr 27:1107–1121

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, US

    Google Scholar 

  • John R, Dalling JW, Harms KE et al (2007) Soil nutrients influence spatial distributions of tropical tree species. PNAS 104:864–869

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Karst J, Gilbert B, Lechowicz MJ (2005) Ferns community assembly: the role of chance and the environmental at local and intermediate scales. Ecology 86:2473–2486

    Article  Google Scholar 

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974

    CAS  Article  PubMed  Google Scholar 

  • Legendre P, Lapointe F, Casgrain P (1994) Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:1487–1499

    Article  Google Scholar 

  • Legendre P, Mi X, Ren H et al (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674

    Article  PubMed  Google Scholar 

  • Legname P (1982) Árboles indígenas del noroeste argentino. Opera Lilloana 34:1–226

    Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspective in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • Malizia LR, Pacheco S, Blundo C, Brown AD (2012) Caracterización altitudinal, uso y conservación de las yungas subtropicales de Argentina. Ecosistemas 21:53–73

    Google Scholar 

  • Minetti JL, González JA (2006) El cambio climático en Tucumán. Sus impactos. Conservación de la Naturaleza 17:1–23

    Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Oliveira-Filho A, Fontes M (2000) Patterns of floristic differentiation among Atlantic Forest in southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Article  Google Scholar 

  • Pacheco S, Malizia LR, Cayuela L (2010) Effects of climate change on subtropical forests of South America. Trop Conserv Sci 3(4):423–437

    Google Scholar 

  • Phillips OL, Núñez Vargas P, Chuspe Zans ME et al (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775

    Article  Google Scholar 

  • Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forest of South America. Ann Mo Bot Gard 80:902–927

    Article  Google Scholar 

  • Pyke C, Condit R, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. J Veg Sci 12:553–566

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    CAS  Article  PubMed  Google Scholar 

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15

    Article  Google Scholar 

  • Silva JSB, Montoya AJD, López DC, Hurtado FHM (2011) Variación florística de especies arbóreas a escala local en un bosque de tierra firme en la Amazonia colombiana. Acta Amazonica 40:179–188

    Article  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Svenning JC, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr 32:1019–1033

    Article  Google Scholar 

  • ter Steege H, Zagt R (2002) Density and diversity. Nature 417:689–699

    Google Scholar 

  • Thiers O, Gerding V (2007) Variabilidad topográfica y edáfica en bosques de Nothofagus betuloides (Mirb) Blume, en el suroeste de Tierra del Fuego, Chile. Rev Chil Hist Nat 80:201–211

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environmental and floristic variation of western Amazonian forests. Science 299:241–244

    CAS  Article  PubMed  Google Scholar 

  • Valencia R, Foster RB, Villa G et al (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229

    Article  Google Scholar 

  • Vázquez GA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure and diversity in the Sierra de Manantlán. J Ecol 86:999–1020

    Article  Google Scholar 

  • Vellend M, Srivastava DS, Anderson KM et al (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420–1430

    Article  Google Scholar 

  • Webb CO, Peart DR (2000) Habitat associations of trees and seedlings in a Bornean rain forest. J Ecol 88:464–478

    Article  Google Scholar 

  • Werneck FP, Costa GC, Coll GR et al (2011) Revisiting the historical distribution of seasonally dry tropical forest: new insights based on palaeodistribution modelling and palynological evidence. Global Ecol Biogeogr 20:272–288

    Article  Google Scholar 

  • Williams-Linera G, Lorea F (2009) Tree species diversity driven by environmental and anthropogenic factors in tropical dry forest fragments of central Veracruz, Mexico. Biodivers Conserv 18:3269–3293

    Article  Google Scholar 

  • Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41:496–506

    Article  Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, US

    Book  Google Scholar 

Download references

Acknowledgments

We thank C. Aguirre, A. Piggot, D. Delgado, E. Cuyckens, C. Humano, and S. Lorenzatti for fieldwork in the permanent plots and soil sampling. K. Buzza, S. Pacheco, and L. Cristobal provided laboratory assistance. A. Malizia and R. Grau improved a preliminary manuscript version and we thank two anonymous reviewers. We acknowledge economic support from CONICET, Rufford Small Grant, ECOSUR, and Fundación ProYungas. We thank many private owners for allowing us to work on their properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Blundo.

Additional information

Communicated by Martin Nunez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 377 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blundo, C., González-Espinosa, M. & Malizia, L.R. Relative contribution of niche and neutral processes on tree species turnover across scales in seasonal forests of NW Argentina. Plant Ecol 217, 359–368 (2016). https://doi.org/10.1007/s11258-016-0577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0577-x

Keywords

  • Climate
  • Dispersal limitation
  • Environmental heterogeneity
  • Soil texture
  • Topography