Skip to main content

Advertisement

Log in

Post-fire resprouting oaks (genus: Quercus) exhibit plasticity in xylem vulnerability to drought

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Resprouting is a key functional trait for species in disturbance prone environments. In many semi-arid environments, woody plants face both fire and drought as recurring disturbances. Past work has demonstrated that oaks inhabiting sky-island forests of the northern Sierra Madre Oriental have differing microhabitat preferences and heavy stem dieback occured during the historic 2011 drought indicating potential xylem failure. These oak species, representing two sections within the genus, are all post-fire resprouters: they can resprout from underground storage organs when fire kills above ground tissue. Resprouts provide an opportunity to examine how functional traits may change as plastic responses to changing environmental conditions. Post-fire resprouts have increased root:shoot ratios relative to adults and therefore have access to more water relative to leaf demand. We expected that if resprouts exhibit plasticity in xylem function, they should favor water transport efficiency over safety: they should have higher maximum xylem conductivity, but greater susceptibility to drought-induced cavitation. We examined four oak species common in the Davis Mountains in west Texas and compared adult physiology with that of resprouts following wildfire. We found that species differed in degree of desiccation avoidance (isohydry) consistent with microhabitat preferences and that the species that were most desiccation tolerant as adults had resprouts significantly more susceptible to xylem cavitation. We found no evidence for a trade-off between efficiency and safety, however.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerly D (2004) Functional strategies of chaparral shrubs in relation to season water deficit and disturbance. Ecol Monogr 74:25–44

    Article  Google Scholar 

  • Alder N, Pockman W, Sperry J, Nuismer S (1997) Use of centrifugal force in the study of xylem cavitation. J Exp Bot 48:665–674. doi:10.1093/jxb/48.3.665

    Article  CAS  Google Scholar 

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci 95:14839–14842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderegg WRL (2015) Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol 205:1008–1014

    Article  PubMed  Google Scholar 

  • Anderegg WR, Flint A, Huang Cy, Flint L, Berry JA, Davis FW, Sperry JS, Field CB (2015) Tree mortality predicted from drought-induced vascular damage

  • Bell DT (2001) Ecological response syndromes in the flora of southwestern Western Australia: Fire resprouters versus reseeders. Bot Rev 67:417–440

    Article  Google Scholar 

  • Bhaskar R, Ackerly DD (2006) Ecological relevance of minimum seasonal water potentials. Physiol Plant 127:353–359. doi:10.1111/j.1399-3054.2006.00718.x

    Article  CAS  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Article  PubMed  Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, London

    Book  Google Scholar 

  • Cavender-Bares J, Holbrook N (2001) Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell Environ 24:1243–1256

    Article  Google Scholar 

  • Cavender-Bares J, Kitajima K, Bazzaz FA (2004) Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr 74:635–662

    Article  Google Scholar 

  • Charles-Dominique T, Beckett H, Midgley GF, Bond WJ (2015) Bud protection: a key trait for species sorting in a forest–savanna mosaic. New Phytol. doi:10.1111/nph.13406

    PubMed  Google Scholar 

  • Choat B, Drayton WM, Brodersen C, Matthews MA, Shackel KA, Wada H, McElrone AJ (2010) Measurement of vulnerability to water stress-induced cavitation in grapevine: A comparison of four techniques applied to a long-vesseled species. Plant, Cell Environ 33:1502–1512

    Google Scholar 

  • Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193:713–720

    Article  PubMed  Google Scholar 

  • Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE (2013) Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol 197:19–35. doi:10.1111/nph.12001

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A (2010) Does sample length influence the shape of xylem embolism vulnerability curves? A test with the cavitron spinning technique. Plant, Cell Environ 33:1543–1552

    Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18:83–92

    Article  Google Scholar 

  • Corcuera L, Cochard H, Gil-Pelegrin E, Notivol E (2011) Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought. Trees 25:1033–1042. doi:10.1007/s00468-011-0578-2

    Article  Google Scholar 

  • Davis SD, Ewers FW, Wood J, Reeves JJ, Kolb KJ (1999) Differential susceptibility to xylem cavitation among three pairs of Ceanothus species in the transverse mountain ranges of southern California. Ecoscience 6:180–186

    Google Scholar 

  • Falster DS, Westoby M (2005) Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111:57–66

    Article  Google Scholar 

  • Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao K-F, Cochard H, Delzon S, Domec J-C, Fan Z-X, Feild TS, Jacobsen AL, Johnson DM, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, McCulloh KA, Mencuccini M, Mitchell PJ, Morris H, Nardini A, Pittermann J, Plavcová L, Schreiber SG, Sperry JS, Wright IJ, Zanne AE (2015) Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol. doi:10.1111/nph.13646

    PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2000) Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl Ecol 1:31–41

    Article  Google Scholar 

  • Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA (2001) Cavitation fatigue. embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol 125:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB (2015) The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems. New Phytol 205:116–127. doi:10.1111/nph.13017

    Article  PubMed  Google Scholar 

  • Hessl AE (2011) Pathways for climate change effects on fire: Models, data, and uncertainties. Prog Phys Geogr 35:393–407

    Article  Google Scholar 

  • Hipp AL, Eaton DA, Cavender-Bares J, Fitzek E, Nipper R, Manos PS (2014) A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS ONE 9:e93975

    Article  PubMed  PubMed Central  Google Scholar 

  • Holbrook NM, Burns MJ, Field CB (1995) Negative xylem pressures in plants: A test of the balancing pressure technique. Science 270:1193–1193

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPPC, Geneva, Switzerland

  • Jacobsen AL, Pratt RB (2012) No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesselled liana (Vitis vinifera). New Phytol 194:982–990. doi:10.1111/j.1469-8137.2012.04118.x

    Article  PubMed  Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2007) Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant, Cell Environ 30:1599–1609

    Article  Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2008) Comparative community physiology: Nonconvergence in water relations among three semi-arid shrub communities. New Phytol 180:100–113. doi:10.1111/j.1469-8137.2008.02554.x

    Article  PubMed  Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Tobin MF (2014) Geographic and seasonal variation in chaparral vulnerability to cavitation. Madroño 61:317–327

    Article  Google Scholar 

  • Keeley JE (1991) Seed germination and life history syndromes in the California chaparral. Bot Rev 57:81–116

    Article  Google Scholar 

  • Koepke DF, Kolb TE, Adams HD (2010) Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone. Oecologia 163:1079–1090

    Article  PubMed  Google Scholar 

  • Lamy J-B, Delzon S, Bouche PS, Alia R, Vendramin GG, Cochard H, Plomion C (2014) Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytol 201:874–886

    Article  PubMed  Google Scholar 

  • Li Y, Sperry J, Taneda H, Bush S, Hacke U (2008) Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytol 177:558–568

    PubMed  Google Scholar 

  • Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199

    Article  Google Scholar 

  • Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB (2006) Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell Environ 29:571–583

    Article  Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349

    Article  CAS  PubMed  Google Scholar 

  • McDowell N, Pockman W, Allen C, Breshears D, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EZ (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • McIntyre PJ, Thorne JH, Dolanc CR, Flint AL, Flint LE, Kelly M, Ackerly DD (2015) Twentieth-century shifts in forest structure in california: Denser forests, smaller trees, and increased dominance of oaks. Proc Natl Acad Sci 112:1458–1463. doi:10.1073/pnas.1410186112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinzer FC, Woodruff DR, Marias DE, McCulloh KA, Sevanto S (2014) Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species. Plant, Cell Environ 37:2577–2586. doi:10.1111/pce.12327

    Article  Google Scholar 

  • Melcher PJ, Zwieniecki MA, Holbrook NM (2003) Vulnerability of xylem vessels to cavitation in sugar maple. scaling from individual vessels to whole branches. Plant Physiol 131:1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melcher PJ, Michele Holbrook N, Burns MJ, Zwieniecki MA, Cobb AR, Brodribb TJ, Choat B, Sack L (2012) Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods Ecol Evol 3:685–694. doi:10.1111/j.2041-210X.2012.00204.x

    Article  Google Scholar 

  • Mencuccini M, Comstock J (1997) Vulnerability to cavitation in populations of two desert species, Hymenoclea salsola and Ambrosia dumosa, from different climatic regions. J Exp Bot 48:1323–1334

    Article  CAS  Google Scholar 

  • Mencuccini M, Minunno F, Salmon Y, Martínez-Vilalta J, Hölttä T (2015) Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytol. doi:10.1111/nph.13461

    Google Scholar 

  • Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K (2012) Climate change and disruptions to global fire activity. Ecosphere 3: art49

  • Muller CH (1940) Oaks of Trans-Pecos Texas. Am Midl Nat 24:703–728

    Article  Google Scholar 

  • Nielsen-Gammon JW (2012) The 2011 Texas drought. Texas Water J 3:59–95

    Google Scholar 

  • Nolan RH, Mitchell PJ, Bradstock RA, Lane PN (2014) Structural adjustments in resprouting trees drive differences in post-fire transpiration. Tree Physiol 4:123–136

    Article  Google Scholar 

  • Ogle K, Barber JJ, Willson C, Thompson B (2009) Hierarchical statistical modeling of xylem vulnerability to cavitation. New Phytol 182:541–554

    Article  CAS  PubMed  Google Scholar 

  • Pausas JG, Pratt RB, Keeley JE, Jacobsen AL, Ramirez AR, Vilagrosa A, Paula S, Kaneakua-Pia IN, Davis SD (2015) Towards understanding resprouting at the global scale. New Phytol. doi:10.1111/nph.13644

    PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer, New York

    Book  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) nlme: linear and nonlinear mixed effects models. http://CRAN.R-project.org/package=nlme

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant, Cell Environ 29:1618–1628

    Article  Google Scholar 

  • Plavcová L, Hacke UG (2012) Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subjected to experimental drought, nitrogen fertilization, and shading. J Exp Bot. doi:10.1093/jxb/ers303

    PubMed  PubMed Central  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Poulos HM (2014) Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland. USA PeerJ 2:e404. doi:10.7717/peerj.404

    Article  PubMed  Google Scholar 

  • Poulos HM, Camp AE (2010) Topographic influences on vegetation mosaics and tree diversity in the Chihuahuan Desert Borderlands. Ecology 91:1140–1151

    Article  PubMed  Google Scholar 

  • Poulos HM, Taylor AH, Beaty RM (2007) Environmental controls on dominance and diversity of woody plant species in a Madrean, Sky Island ecosystem, Arizona, USA. Plant Ecol 193:15–30. doi:10.1007/s11258-006-9245-x

    Article  Google Scholar 

  • Powell AM (1998) Trees & shrubs of the Trans-Pecos and adjacent areas. University of Texas Press

  • Pratt RB, North GB, Jacobsen AL, Ewers FW, Davis SD (2010) Xylem root and shoot hydraulics is linked to life history type in chaparral seedlings. Funct Ecol 24:70–81. doi:10.1111/j.1365-2435.2009.01613.x

    Article  Google Scholar 

  • Pratt RB, Jacobsen AL, Ramirez AR, Helms AM, Traugh CA, Tobin MF, Heffner MS, Davis SD (2014) Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Glob Chang Biol 20:893–907

    Article  PubMed  Google Scholar 

  • Pratt R, MacKinnon E, Venturas M, Crous C, Jacobsen A (2015) Root resistance to cavitation is accurately measured using a centrifuge technique. Tree Physiol 35:185–196

    Article  CAS  PubMed  Google Scholar 

  • Ramirez A, Pratt R, Jacobsen A, Davis S (2012) Exotic deer diminish post-fire resilience of native shrub communities on Santa Catalina Island, southern California. Plant Ecol 213:1037–1047

    Article  Google Scholar 

  • Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P et al (2013) Driving factors of a vegetation shift from scots pine to pubescent oak in dry alpine forests. Glob Change Biol 19:229–240

    Article  Google Scholar 

  • Savage JA, Cavender-Bares JM (2011) Contrasting drought survival strategies of sympatric willows (genus: Salix): Consequences for coexistence and habitat specialization. Tree Physiol 31:604–614

    Article  PubMed  Google Scholar 

  • Schwilk DW, Ackerly DD (2001) Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94:326–336

    Article  Google Scholar 

  • Schwilk DW, Gaetani MS, Poulos HM (2013) Oak bark allometry and fire survival strategies in the Chihuahuan Desert Sky Islands, Texas, USA. PLoS ONE 8:e79285

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperry J, Saliendra N (1994) Intra-and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell Environ 17:1233–1241

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    Article  PubMed  Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell Environ 31:632–645

    Article  Google Scholar 

  • Sperry JS, Christman MA, Torres-Ruiz JM, Taned H, Smith DD (2012) Vulnerability curves by centrifugation: is there an open vessel artifact, and are “r” shaped curves necessarily invalid?

  • Taneda H, Sperry JS (2008) A case-study of water transport in co-occurring ring-versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol 28:1641–1651

    Article  PubMed  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419

    Article  Google Scholar 

  • Tobin MF, Pratt RB, Jacobsen AL, De Guzman ME (2013) Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method. Plant Biol 15:496–504

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Biol 40:19–36

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360

    Article  Google Scholar 

  • Tyree MT, Engelbrecht BM, Vargas G, Kursar TA (2003) Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiol 132:1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urli M, Lamy J-B, Sin F, Burlett R, Delzon S, Porté A (2015) The high vulnerability of Quercus robur to drought at its southern margin paves the way for Quercus ilex. Plant Ecol 216:177–187. doi:10.1007/s11258-014-0426-8

    Article  Google Scholar 

  • Utsumi Y, Bobich EG, Ewers FW (2010) Photosynthetic, hydraulic and biomechanical responses of Juglans californica shoots to wildfire. Oecologia 164:331–338

    Article  PubMed  Google Scholar 

  • von Arx G, Archer SR, Hughes MK (2012) Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annal Bot 109:1091–1100

    Article  Google Scholar 

  • Waring EF, Schwilk DW (2014) Plant dieback under exceptional drought driven by elevation, not by plant traits, in Big Bend National Park, Texas, USA. PeerJ 2:e477. doi:10.7717/peerj.477

    Article  PubMed  PubMed Central  Google Scholar 

  • Warshall P (1994) The Madrean sky island archipelago: A planetary overview. In: Proceedings of biodiversity and management of the madrean archipelago: The Sky Islands of Southwestern United States and Northwestern Mexico, Tucson, AZ. USDA Forest Service, Rocky Mountain Forest; Range Experiment Station, RM-GTR-264,

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell Environ 28:800–812

    Article  Google Scholar 

  • Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration, and resistance to water uptake in a pinus sylvestris spacing experiment. Can J For Res 14:692–700

    Article  Google Scholar 

  • Whittaker RH, Niering WA (1965) Vegetation of the Santa Catalina Mountains, Arizona: II a gradient analysis of the south slope. Ecology 46:429–452

    Article  Google Scholar 

  • Willson CJ, Jackson RB (2006) Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. Physiol Plant 127:374–382. doi:10.1111/j.1399-3054.2006.00644.x

    Article  CAS  Google Scholar 

  • Wortemann R, Herbette S, Barigah TS, Fumanal B, Alia R, Ducousso A, Gomory D, Roeckel-Drevet P, Cochard H (2011) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol 31:1175–1182

    Article  PubMed  Google Scholar 

  • Zeppel MJ, Harrison SP, Adams HD, Kelley DI, Li G, Tissue DT, Dawson TE, Fensham R, Medlyn BE, Palmer A et al (2015) Drought and resprouting plants. New Phytol 206:583–589

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anna Jacobsen, Brandon Pratt, and Mike Tobin for sharing techniques and helping trouble-shoot our conductivity measurement methods. A grant from the Appleton-Whittell Research Ranch to R. Lackey supported some of our early work in this system and helped us develop methods and a grant from the USGS South-Central Climate Science Center to D. Schwilk supported some of the later work. T. Brown and J. Willms were in part supported by a Howard Hughes Medical Institute grant through the Undergraduate Biological Sciences Education Program to Texas Tech University. We thank Jason Wrinkle, Greg Crow, and the other helpful staff of the Nature Conservancy for essential support of this work. We thank the associate editor and two anonymous reviewers for very helpful comments on an earlier version of this manuscript. This article is dedicated to the memory of Christopher Rodriguez who planned to investigate drought susceptibility of post-fire oak resprouts and whose enthusiasm for learning and excitement for the project inspired others to continue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan W. Schwilk.

Additional information

Communicated by Prof. Michael Lawes, Prof. Ross Bradstock, and Prof. David Keith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwilk, D.W., Brown, T.E., Lackey, R. et al. Post-fire resprouting oaks (genus: Quercus) exhibit plasticity in xylem vulnerability to drought. Plant Ecol 217, 697–710 (2016). https://doi.org/10.1007/s11258-016-0568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0568-y

Keywords

Navigation