Skip to main content

Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia

Abstract

With global biodiversity in decline, there is now an urgent requirement to take ameliorative action for endangered species in the form of re-introductions. For the highly diverse orchid family, many species face imminent extinction. Successful re-introductions that result in self-sustaining populations require not only an understanding of existing threats, but an in-depth understanding of species ecology. Increasingly, translocations, ranging from re-introductions to assisted colonisation, are being adopted as recovery actions. Do these translocations mitigate threatening processes and account for the two key ecological attributes for orchid survival; pollinator and mycorrhizal presence? Here, we conducted a literature review identifying the known threats to orchid survival and their necessary mitigation strategies. Next, we evaluated the success of 74 published international orchid translocations on 66 species against a consideration of orchid ecological attributes. Lastly, we empirically tested an additional 22 previously unpublished re-introductions on 12 species undertaken since 2007 against a re-introduction process that accounts for identified threats and orchid ecological attributes. We identified habitat destruction, weed invasion, herbivory, illegal collection, pollinator decline, pathogens and climate change as critical threats to orchid survival. In our global review based on published translocations, the average survival rate, 1-year post translocation was 66 % yet only 2.8 % of studies reported natural recruitment in field sites. Although survival of translocated orchids is clearly being achieved, these programmes did not relate orchid growth and development to key ecological requirements of orchid population resilience, pollinator and mycorrhizal ecology. Ensuring pollinator and mycorrhizal presence shows that these two factors alone are key factors influencing survival and persistence in an Australian review of 22 previously unpublished orchid re-introductions. In the Australian review flowering in the year following, out-planting was observed for 81 % of the re-introductions with seed set occurring in 63 % of re-introductions within the length of the study. Recruitment was observed in 18 % of the Australian re-introduced populations indicating a degree of population resilience. As orchid re-introductions will be a major strategy for wild orchid conservation in the future, we present a framework for orchid re-introductions, including criteria for success. We recommend symbiotic propagation and, for specialised pollination syndromes, the study of pollinator interactions prior to site selection and re-introduction of plants.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

References

  • Adams PB, Lawson SD (1993) Pollination in Australian Orchids: a Critical-Assessment of the Literature 1882-1992. Aust J Bot 41(5):553–575

    Article  Google Scholar 

  • Ahteensuu M, Lehvävirta S (2014) Assisted migration, risks and scientific uncertainty, and ethics: a comment on Albrecht et al’. s review paper. J Agric Environ Ethics 27(3):471–477

    Article  Google Scholar 

  • Alacs E, Georges A (2008) Wildlife across our borders: a review of the illegal trade in Australia. Aust J Forensic Sci 40(2):147–160

    Article  Google Scholar 

  • Albrecht MA, Maschinski J (2012) Influence of founder population size, propagule stages, and life history on the survival of reintroduced plant populations. In: Maschinski J, Haskins KE (eds) Plant reintroduction in a changing climate. Island Press/Center for Resource Economics, Seattle, pp 171–188

    Chapter  Google Scholar 

  • Albrecht MA, Guerrant EO, Maschinski J, Kennedy KL (2011) A long-term view of rare plant reintroduction. Biol Conserv 144(11):2557–2558

    Article  Google Scholar 

  • Andersen DK, Ejrnæs R, Minter MO, Riis T, Vinther E, Bruun HH (2014) Partitioning of habitat effects casts light on the decline of the fen orchid, Liparis loeselii. Plant Ecol Divers. http://pure.au.dk/portal/en/publications/partitioning-of-habitat-effects-casts-light-on-the-decline-of-the-fen-orchid-liparis-loeselii(b894d28a-c0cf-4359-8986-1829d43196d5).html. (submitted)

  • Arditti J, Ghani AKA (2000) Tansley review No. 110. Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Article  Google Scholar 

  • Arenas MA, Gomez RS, Hagsater E (2007) Risk of extinction and patterns of diversity loss in Mexican orchids. Lankesteriana 7(1–2):114–121

    Google Scholar 

  • Backhouse GN (2007) Are our orchids safe down under? A national assessment of threatened orchids in Australia. Lankesteriana 7:28–43

    Google Scholar 

  • Backhouse G, Cameron D (2005) Application of IUCN 2001. Red list categories in determining the conservation status of native orchids of Victoria, Australia. Selbyana 26:58–74

    Google Scholar 

  • Bailarote BC, Lievens B, Jacquemyn H (2012) Does mycorrhizal specificity affect orchid decline and rarity? Am J Bot 99(10):1655–1665

    PubMed  Article  Google Scholar 

  • Ballantyne M, Pickering C (2012) Ecotourism as a threatening process for wild orchids. J Ecotourism 11(1):34–47

    Article  Google Scholar 

  • Barman D, Devadas R (2013) Climate change on orchid population and conservation strategies: a review. J Crop Weed 9(2):1–12

    Google Scholar 

  • Batty AL, Dixon KW, Brundrett M, Sivasithamparam K (2001) Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytol 152(3):511–520

    Article  Google Scholar 

  • Bower CC (2006) Specific pollinators reveal a cryptic taxon in the bird orchid, Chiloglottis valida sensu lato (Orchidaceae) in south-eastern Australia. Aust J Bot 54(1):53–64

    Article  Google Scholar 

  • Bower CC, Brown GR (2009) Pollinator specificity, cryptic species and geographical patterns in pollinator responses to sexually deceptive orchids in the genus Chiloglottis: the Chiloglottis gunnii complex. Aust J Bot 57(1):37–55

    Article  Google Scholar 

  • Brundrett MC (2007) Scientific approaches to Australian temperate terrestrial orchid conservation. Aust J Bot 55(3):293–307

    Article  Google Scholar 

  • Brundrett MC, Scade A, Batty AL, Dixon KW, Sivasithamparam K (2003) Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycol Res 107(10):1210–1220

    PubMed  Article  Google Scholar 

  • Burbidge AA, Byrne M, Coates D, Garnett ST, Harris S, Hatward MW, Setterfield SA (2011) Is Australia ready for assisted colonization? Policy changes required to facilitate translocations under climate change. Pac Conserv Biol 17(3):259–269

    Google Scholar 

  • Calderon-Saenz E. (2007). Libro Rojo de Plantas de Colombia. Volumen 6: Orquideas primer parte. Instituto Alexander von Humboldt—Ministerio de Ambiente, Vivienda y Desarrollo

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

    Article  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    PubMed  CAS  Article  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    PubMed  CAS  Article  Google Scholar 

  • Chung MY, Chung MG (2007) Extremely low levels of genetic diversity in the terrestrial orchid Epipactis thunbergii (Orchidaceae) in South Korea: implications for conservation. Bot J Linn Soc 155(2):161–169

    Article  Google Scholar 

  • Chung MY, Nason JD, López-Pujol J, Yamashiro T, Yang BY, Luo YB, Chung MG (2014) Genetic consequences of fragmentation on populations of the terrestrial orchid Cymbidium goeringii. Biol Conserv 170:222–231

    Article  Google Scholar 

  • Clements MA, Ellyard RK (1979) The symbiotic germination of Australian terrestrial orchids [Pterostylis, Diuris, Thelymitra inoculates with mycorrhizal fungi Tulasnella and Ceratobandium]. American Orchid Society Bulletin, Coral Gables

    Google Scholar 

  • Clements MA, Muir H, Crib PJ (1986) A preliminary report on the symbiotic germination of European terrestrial orchids. Kew Bulletin 41:437–445

    Article  Google Scholar 

  • Coates F, Duncan M (2009) Demographic variation between populations of Caladenia orientalis–a fire-managed threatened orchid. Aust J Bot 57(4):326–339

    Article  Google Scholar 

  • Coates F, Lunt ID, Tremblay RL (2006) Effects of disturbance on population dynamics of the threatened orchid Prasophyllum correctum DL Jones and implications for grassland management in south-eastern Australia. Biol Conserv 129(1):59–69

    Article  Google Scholar 

  • Cook GD (1991) Effects of fire regimen on two species of epiphytic orchids in tropical savannas of the Northern Territory. Aust J Ecol 16(4):537–540

    Article  Google Scholar 

  • Crain BJ, Tremblay RL (2014) Do richness and rarity hotspots really matter for orchid conservation in light of anticipated habitat loss? Divers Distrib 20(6):652–662

    Article  Google Scholar 

  • Cribb P (1997) The genus Cypripedium. Timber Press, Portland

    Google Scholar 

  • Cribb PJ, Kell SP, Dixon KW, Barrett RL (2003) Orchid conservation: a global perspective. Orchid conservation. Natural History Publications, Kota Kinabalu, pp 1–24

    Google Scholar 

  • Cropper SC, Calder DM (1990) The floral biology of Thelymitra epipactoides (Orchidaceae), and the implications of pollination by deceit on the survival of this rare orchid. Plant Syst Evol 170(1–2):11–27

    Article  Google Scholar 

  • Dalrymple SE, Banks E, Stewart GB, Pullin AS (2012) A meta-analysis of threatened plant reintroductions from across the globe. In: Maschinski J, Haskins KE (eds) Plant reintroduction in a changing climate. Island Press/Center for Resource Economics, Seattle, pp 31–50

    Chapter  Google Scholar 

  • Darling DC, Packer L (1988) Effectiveness of Malaise traps in collecting Hymenoptera: the influence of trap design, mesh size, and location. Can Entomol 120(8–9):787–796

    Article  Google Scholar 

  • Davies R (1999) The significance and weed management of temperate native grasslands and box grassy woodlands in South Australia. Balanc Conserv Prod Grassy Landsc 64

  • Davis BJ, Phillips RD, Wright M, Linde CC, Dixon KW (2015) Continent-wide distribution in mycorrhizal fungi: implications for the biogeography of specialized orchids. Ann Bot 116:413–421

    PubMed  Article  Google Scholar 

  • Dearnaley JD (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17(6):475–486

    PubMed  Article  Google Scholar 

  • Decruse SW, Reny N, Shylajakumari S, Krishnan PN (2013) In vitro propagation and field establishment of Eulophia cullenii (Wight) Bl., a critically endangered orchid of Western Ghats, India through culture of seeds and axenic seedling-derived rhizomes. In Vitro Cell Dev Biol Plant 49(5):520–528

    Article  Google Scholar 

  • Dixon K, Tremblay RL (2009) Biology and natural history of Caladenia. Aust J Bot 57(4):247–258

    Article  Google Scholar 

  • Dixon KW, Batty AL, Phillips RD (2007) The orchid conservation challenge. Lankesteriana 7:11–12

    Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge

    Google Scholar 

  • Duncan M, Pritchard A, Coates F (2005) Major threats to endangered orchids of Victoria, Australia. Selbyana 26:189–195

    Google Scholar 

  • Erickson AM, Lym RG, Kirby D (2006) Effect of herbicides for leafy spurge control on the western prairie fringed orchid. Rangel Ecol Manag 59(5):462–467

    Article  Google Scholar 

  • Faast R, Facelli JM (2009) Grazing orchids: impact of florivory on two species of Caladenia (Orchidaceae). Aust J Bot 57(4):361–372

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126(2):131–140

    Article  Google Scholar 

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618

    PubMed  Article  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Freudenstein JV, Barrett CF (2010) Mycoheterotrophy and diversity in Orchidaceae. In: Seberg O, Petersen G, Barfod A, Davis JI (eds) Diversity, phylogeny and evolution in the Monocotyledons. Aarhus University Press, Aarhus, pp 25–37

    Google Scholar 

  • Gaskett AC (2011) Orchid pollination by sexual deception: pollinator perspectives. Biol Rev 86(1):33–75

    PubMed  CAS  Article  Google Scholar 

  • Ghorbani A, Gravendeel B, Naghibi F, de Boer H (2014) Wild orchid tuber collection in Iran: a wake-up call for conservation. Biodivers Conserv 23(11):2749–2760

    Article  Google Scholar 

  • Godefroid S, Piazza C, Rossi G, Buord S, Stevens AD, Aguraiuja R, Vanderborght T (2011) How successful are plant species reintroductions? Biol Conserv 144(2):672–682

    Article  Google Scholar 

  • Guerrant EO Jr (2012) Characterizing two decades of rare plant reintroductions. In: Maschinski J, Haskins KE (eds) Plant reintroduction in a changing climate. Island Press/Center for Resource Economics, Seattle, pp 9–29

    Chapter  Google Scholar 

  • Guerrant EO Jr (2013) The value and propriety of reintroduction as a conservation tool for rare plants. Botany 91(5):v–x

    Article  Google Scholar 

  • Hundera K, Aerts R, De Beenhouwer M, Van Overtveld K, Helsen K, Muys B, Honnay O (2013) Both forest fragmentation and coffee cultivation negatively affect epiphytic orchid diversity in Ethiopian moist evergreen Afromontane forests. Biol Conserv 159:285–291

    Article  Google Scholar 

  • Hutchings MJ (1989) Population biology and conservation of Ophrys sphegodes. In: Pritchard HW (ed) Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, Cambridge 101–115

  • Jacquemyn H, Merckx V, Brys R, Tyteca D, Cammue B, Honnay O, Lievens B (2011) Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol 192(2):518–528

    PubMed  Article  Google Scholar 

  • Janes JK, Steane DA, Vaillancourt RE (2010) An investigation into the ecological requirements and niche partitioning of Pterostylidinae (Orchidaceae) species. Aust J Bot 58(5):335–341

    Article  Google Scholar 

  • Jasinge N (2014) The effect of seasonal burning on three Australian native orchids. Masters Thesis, RMIT University

  • Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81(02):219–235

    PubMed  Article  Google Scholar 

  • Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15(4):140–143

    PubMed  Article  Google Scholar 

  • Knapp EE, Rice KJ (1994) Starting from seed, genetic issues in using native grasses for restoration. Ecol Restor 12(1):40–45

    Google Scholar 

  • Koopowitz H (2001) Orchids and their conservation. Timber Press, Portland

  • Koopowitz H, Hawkins BA (2012) Global climate change is confounding species conservation strategies. Integr Zool 7(2):158–164

    PubMed  Article  Google Scholar 

  • Kramer AT, Havens K (2009) Plant conservation genetics in a changing world. Trends Plant Sci 14:599–607

    PubMed  CAS  Article  Google Scholar 

  • Krauss SL, Koch JM (2004) Methodological insights: rapid genetic delineation of provenance for plant community restoration. J Appl Ecol 41(6):1162–1173

    Article  Google Scholar 

  • Kreziou A, de Boer H, Gravendeel B (2015) Harvesting of salep orchids in north-western Greece continues to threaten natural populations. Oryx 46:1–4

    Article  Google Scholar 

  • Kull T, Hutchings MJ (2006) A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conserv 129(1):31–39

    Article  Google Scholar 

  • Leigh JH, Boden R, Briggs JD (1984) Extinct and endangered plants of Australia. Macmillan, Melbourne

    Google Scholar 

  • Li A, Ge S (2006) Genetic variation and conservation of Changnienia amoena, an endangered orchid endemic to China. Plant Syst Evol 258(3–4):251–260

    CAS  Article  Google Scholar 

  • Light MH, MacConaill M (2011) Potential impact of insect herbivores on orchid conservation. Eur J Environ Sci 1(2):115–124

    Google Scholar 

  • Liu H, Feng CL, Luo YB, Chen BS, Wang ZS, Gu HY (2010) Potential challenges of climate change to orchid conservation in a wild orchid hotspot in southwestern China. Bot Rev 76(2):174–192

    Article  Google Scholar 

  • Lunt ID (1994) Variation in flower production of nine grassland species with time since fire, and implications for grassland management and restoration. Pac Conserv Biol 1(4):359–366

    Google Scholar 

  • Lunt ID (1997) Effects of long-term vegetation management on remnant grassy forests and anthropogenic native grasslands in south-eastern Australia. Biol Conserv 81(3):287–297

    Article  Google Scholar 

  • Lunt ID, Byrne M, Hellmann JJ, Mitchell NJ, Garnett ST, Hayward MW, Zander KK (2013) Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change. Biol Conserv 157:172–177

    Article  Google Scholar 

  • Lym RG (2005) Integration of biological control agents with other weed management technologies: successes from the leafy spurge (Euphorbia esula) IPM program. Biol Control 35(3):366–375

    Article  Google Scholar 

  • Martin KP (2003) Clonal propagation, encapsulation and reintroduction of Ipsea malabarica (Reichb. f.) JD Hook., an endangered orchid. In Vitro Cell Dev Biol Plant 39(3):322–326

    CAS  Article  Google Scholar 

  • Martinez-Meyer E, Peterson AT, Servin JI, Kiff LF (2006) Ecological niche modelling and prioritizing areas for species re-introductions. Oryx 40(4):411–418

    Article  Google Scholar 

  • Maschinski, J, Haskins, KE (2012) Plant reintroduction in a changing climate: promises and perils. Island Press

  • Matthews RW, Matthews JR (1970) Malaise trap studies of flying insects in a New York mesic forest ordinal composition and seasonal abundance. J N Y Entomol Soc 78:52–59

    Google Scholar 

  • McKendrick SL (1995) The effects of herbivory and vegetation on laboratory-raised Dactylorhiza praetermissa (Orchidaceae) planted into grassland in southern England. Biol Conserv 73(3):215–220

    Article  Google Scholar 

  • Menges ES (1991) The application of minimum viable population theory to plants. Genetics and conservation of rare plants. Oxford University Press, New York, pp 45–61

    Google Scholar 

  • Orejuela-Gartner JE (2012) Orchids of the cloud forests of southwestern Colombia and opportunities for their conservation. Eur J Environ Sci 2(1):19–32

    Google Scholar 

  • Parra-Tabla V, Vargas CF, Magaña-Rueda S, Navarro J (2000) Female and male pollination success of Oncidium ascendens Lindey (Orchidaceae) in two contrasting habitat patches: forest vs agricultural field. Biol Conserv 94(3):335–340

    Article  Google Scholar 

  • Pauw A (2007) Collapse of a pollination web in small conservation areas. Ecology 88(7):1759–1769

    PubMed  Article  Google Scholar 

  • Pemberton RW (2010) Biotic resource needs of specialist orchid pollinators. Bot Rev 76(2):275–292

    Article  Google Scholar 

  • Petit S, Dickson CR (2005) Grass-tree (Xanthorrhoea semiplana, Liliaceae) facilitation of the endangered pink-lipped spider orchid (Caladenia syn. Arachnorchis behrii, Orchidaceae) varies in South Australia. Aust J Bot 53(5):455–464

    Article  Google Scholar 

  • Phelps J, Webb EL (2015) “Invisible” wildlife trades: Southeast Asia’s undocumented illegal trade in wild ornamental plants. Biol Conserv 186:296–305

    Article  Google Scholar 

  • Phillips RD, Faast R, Bower CC, Brown GR, Peakall R (2009) Implications of pollination by food and sexual deception for pollinator specificity, fruit set, population genetics and conservation of Caladenia (Orchidaceae). Aust J Bot 57(4):287–306

    Article  Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99(3):858–869

    Article  Google Scholar 

  • Phillips RD, Dixon KW, Peakall R (2012) Low population genetic differentiation in the Orchidaceae: implications for diversification of the family. Mol Ecol 21(21):5208–5220

    PubMed  Article  Google Scholar 

  • Pierce S, Ferrario A, Cerabolini B (2010) Outbreeding and asymbiotic germination in the conservation of the endangered Italian endemic orchid Ophrys benacensis. Plant Biosyst 144(1):121–127

    Article  Google Scholar 

  • Pobke K (2007) Draft recovery plan for 23 threatened flora taxa on Eyre Peninsula, South Australia 2007–2012. Department for Environment and Heritage, South Australia

    Google Scholar 

  • Ramsay MM, Stewart J (1998) Re-establishment of the lady’s slipper orchid (Cypripedium calceolus L.) in Britain. Bot J Linn Soc 126(1–2):173–181

    Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244(1–2):149–163

    CAS  Article  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118(3):334–345

    Article  Google Scholar 

  • Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. Am J Bot 80:1374–1378

    Article  Google Scholar 

  • Reed BM, Sarasan V, Kane M, Bunn E, Pence VC (2011) Biodiversity conservation and conservation biotechnology tools. Vitro Cell Dev Biol Plant 47(1):1–4

    CAS  Article  Google Scholar 

  • Reiter N, Walsh N, Lawrie A (2015) Causes of infertility in the endangered Australian endemic plant Borya mirabilis (Boryaceae). Aust J Bot. doi:10.1071/BT15142

    Google Scholar 

  • Roberts DL (2003) Pollination biology: the role of sexual reproduction in orchid conservation. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota Kinabalu, pp 113–136

  • Roberts DL, Wilcock CC (2005) Fragmentation of tropical rainforests and its effect on orchid survival. In: Proceedings of the 17th world orchid conference: sustaining orchids for the future 2002. Natural History Publications (Borneo) Sdn Bhd

  • Roche SA, Carter RJ, Peakall R, Smith LM, Whitehead MR, Linde CC (2010) A narrow group of monophyletic Tulasnella (Tulasnellaceae) symbiont lineages are associated with multiple species of Chiloglottis (Orchidaceae): implications for orchid diversity. Am J Bot 97(8):1313–1327

    PubMed  Article  Google Scholar 

  • Scade A, Brundrett MC, Batty AL, Dixon KW, Sivasithamparam K (2006) Survival of transplanted terrestrial orchid seedlings in urban bushland habitats with high or low weed cover. Aust J Bot 54(4):383–389

    Article  Google Scholar 

  • Seaton PT, Hu H, Perner H, Pritchard HW (2010) Ex situ conservation of orchids in a warming world. Bot Rev 76(2):193–203

    Article  Google Scholar 

  • Seaton P, Kendon JP, Pritchard HW, Puspitaningtyas DM, Marks TR (2013) Orchid conservation: the next ten years. Lankesteriana 13:93–101

    Google Scholar 

  • Seddon PJ (2010) From reintroduction to assisted colonization: moving along the conservation translocation spectrum. Restor Ecol 18(6):796–802

    Article  Google Scholar 

  • Sletvold N, Grindeland JM, Zu P, Agren J (2012) Strong inbreeding depression and local outbreeding depression in the rewarding orchid Gymnadenia conopsea. Conserv Genet 13(5):1305–1315

    Article  Google Scholar 

  • Smith SE, Read DJ (1996a) Mycorrhizal symbiosis. Academic press, Waltham

    Google Scholar 

  • Smith SE, Read DJ (1996b) Mycorrhizal symbiosis. Academic press, Waltham

    Google Scholar 

  • Smith ZF, James EA, McLean CB (2007) Experimental reintroduction of the threatened terrestrial orchid Diuris fragrantissima. Lankesteriana 7:377–380

    Google Scholar 

  • Soorae PS (ed) (2010) Global re-introduction perspectives: additional case studies from around the globe. IUCN, Amman

    Google Scholar 

  • Stewart SL, Kane ME (2007) Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. Vitro Cell Dev Biol Plant 43(3):178–186

    Article  Google Scholar 

  • Stökl J, Brodmann J, Dafni A, Ayasse M, Hansson BS (2011) Smells like aphids: orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proc R Soc Lond B 278(1709):1216–1222

    Article  Google Scholar 

  • Subedi A, Kunwar B, Choi Y, Dai Y, Van Andel T, Chaudhary RP, Gravendeel B (2013) Collection and trade of wild-harvested orchids in Nepal. J Ethnobiol Ethnomed 9(1):64

    PubMed  PubMed Central  Article  Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104(3):543–556

    PubMed  PubMed Central  Article  Google Scholar 

  • Swarts ND, Sinclair EA, Francis A, Dixon KW (2010) Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol Ecol 19(15):3226–3242

    PubMed  CAS  Article  Google Scholar 

  • Turner IM, Tan HTW, Wee YC, Ibrahim AB, Chew PT, Corlett RT (1994) A study of plant species extinction in Singapore: lessons for the conservation of tropical biodiversity. Conserv Biol 8:705–712

    Article  Google Scholar 

  • Vale Á, Rojas D, Álvarez JC, Navarro L (2013) Distribution, habitat disturbance and pollination of the endangered orchid Broughtonia cubensis (Epidendrae: Laeliinae). Bot J Linn Soc 172(3):345–357

    Article  Google Scholar 

  • Vallee L, Hogbin T, Monks L, Makinson B, Matthes M, Rossetto M (2004) Guidelines for the translocation of threatened Australian plants. The Australian Network for Plant Conservation, Canberra

    Google Scholar 

  • Vereecken NJ, Dafni A, Cozzolino S (2010) Pollination syndromes in Mediterranean orchids—implications for speciation, taxonomy and conservation. Bot Rev 76(2):220–240

    Article  Google Scholar 

  • Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87(2):371–381

    Article  Google Scholar 

  • Whigham DF (1990) The effect of experimental defoliation on the growth and reproduction of a woodland orchid, Tipularia discolor. Can J Bot 68(8):1812–1816

    Article  Google Scholar 

  • Wilcock CC, Neiland MRM (1998) Reproductive characters as priority indicators for rare plant conservation. In: Planta Europa: proceedings of the second european conference on the conservation of wild plants. Swedish Threatened Plants Unit & Plantlife, Uppsala, Sweden/London, pp 221–30

  • Williams-Linera G, Sosa V, Platas T (1995) The fate of epiphytic orchids after fragmentation of a Mexican cloud forest. Selbyana 16:36–40

    Google Scholar 

  • Winkler M, Hülber K, Mehltreter K, Franco JG, Hietz P (2005) Herbivory in epiphytic bromeliads, orchids and ferns in a Mexican montane forest. J Trop Ecol 21(2):147–154

    Article  Google Scholar 

  • Wonkka CL (2010) Large herbivore impacts on demographic characteristics and population dynamics of an endangered orchid (Spiranthes parksii Correll). Dissertation, Texas A&M University

  • Wylie SJ, Li H, Dixon KW, Richards H, Jones MG (2013) Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia. Virus Res 171(1):22–32

    PubMed  CAS  Article  Google Scholar 

  • Yam TW, Tay F, Ang P, Soh W (2011) Conservation and reintroduction of native orchids of Singapore–the next phase. Eur J Environ Sci 1(2):38

    Google Scholar 

  • Yokoi K, Milliken T (1991) Trade in wild-collected slipper orchids in Japan. Traffic Bull 12(1/2):12–16

    Google Scholar 

  • Zettler JA, Zettler LW, Richardson LW (2012) Pestiferous scale insects on native epiphytic orchids in South Florida: a new threat posed by introduced species. Southeast Nat 11(1):127–134

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following people for their part with guidance, assistance in laboratory, field and nursery work for various species mentioned: Rob Cross, Magali Wright, David Pitts, Ash Burns, Geoff Neville, Ryan Phillips, Penelope Amy, Kate Vlcek, Andrew Pritchard, Pauline Rudolph, Ann Lawrie, Australasian Native Orchid Society (Victorian Branch) in particular Richard Thomson, L and J Carrigan, Neil Anderton, Peter Kiernan, Russell Mawson, Andrew Dilley and Mike Wicks for assistance with the plantings. We would also like to thank Parks Victoria and Trust for Nature (and individual landholders) for providing land for these re-introductions, the Australian Network for Plant Conservation, Department of Environment Land Water and Planning, Department of Parks and Wildlife, Wimmera Catchment Management Authority, the Australian Federal Government’s Caring for our Country Program, Australian Orchid Foundation, Portland Aluminium, ALCOA and Griffin Coal for funding the research and re-introduction of many of the orchids presented in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noushka Reiter.

Additional information

Communicated by Dr. Thomas Abeli and Prof. Kingsley Dixon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1 (Supplementary). Review of threatening processes to orchids. Supplementary material 1 (DOCX 13 kb)

11258_2015_561_MOESM2_ESM.docx

Table 2 (Supplementary). Global Review of orchid translocations, comparing survival at last known date, pollination, seed set, recruitment, pollinator and mycorrhizal considerations. Supplementary material 2 (DOCX 29 kb)

11258_2015_561_MOESM3_ESM.docx

Table 3 (Supplementary). Australian review of 22 re-introductions of 12 species from 2007 to 2014 comparing known remaining plants in the wild, re-emergence one year after first dormancy in the field, bench mark site re-emergence the same year as re-introduction re-emergence,  % recruitment as a  % of the number of plants reintroduced and if natural pollination and seed set is occurring in the re-introduced populations. *Population monitoring data by DELWP Grampians. ** Only 3 wild plants are available for monitoring at one site for this species as it virtually no longer exists in the wild. *** No suitable wild site to establish monitoring on (wild site monitoring was initiated in 2012, however monitoring site was vandalized, so monitoring discontinued). Supplementary material 3 (DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reiter, N., Whitfield, J., Pollard, G. et al. Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecol 217, 81–95 (2016). https://doi.org/10.1007/s11258-015-0561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0561-x

Keywords

  • Re-introduction
  • Orchid
  • Conservation
  • Propagation
  • Mycorrhiza
  • Pollinator