Abella SR (2010) Disturbance and plant succession in the Mojave and Sonoran Deserts of the American Southwest. IJERPH 7:1248–1284. doi:10.3390/ijerph7041248
PubMed Central
Article
PubMed
Google Scholar
Abella SR, Engel EC, Lund CL, Spencer JE (2009) Early post-fire plant establishment on a Mojave Desert Burn. Madroño 56:137–148. doi:10.3120/0024-9637-56.3.137
Article
Google Scholar
Allen EB, Steers RJ, Dickens SJ (2011) Impacts of fire and invasive species on desert soil ecology. Rangel Ecol Manag 64:450–462. doi:10.2111/REM-D-09-00159.1
Article
Google Scholar
Ashworth L, Aguilar R, Galetto L, Aizen MA (2004) Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J Ecol 92:717–719. doi:10.1111/j.0022-0477.2004.00910.x
Article
Google Scholar
Beck MJ, Vander Wall SB (2010) Seed dispersal by scatter-hoarding rodents in arid environments. J Ecol 98:1300–1309
Article
Google Scholar
Belnap J, Lange OL (2001) Biological soil crusts: structure, function, and management. Springer, New York
Google Scholar
Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324:481–484. doi:10.1126/science.1163886
Article
CAS
PubMed
Google Scholar
Brisson J, Reynolds JF (1994) The effect of neighbors on root distribution in a Creosotebush (Larrea Tridentata) population. Ecology 75:1693–1702. doi:10.2307/1939629
Article
Google Scholar
Brittingham S, Walker RL (2000) Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs. West North Am Nat 60:374–383
Google Scholar
Brooks ML (2002) Peak fire temperatures and effects on annual plants in the Mojave Desert. Ecol Appl 12:1088–1102
Article
Google Scholar
Brooks ML (2012) Effects of high fire frequency in creosote bush scrub vegetation of the Mojave Desert. Int J Wildl Fire 21:61–68
Article
Google Scholar
Brooks ML, Chambers JC (2011) Resistance to invasion and resilience to fire in Desert Shrublands of North America. Rangel Ecol Manag 64:431–438. doi:10.2111/REM-D-09-00165.1
Article
Google Scholar
Brooks ML, Matchett JR (2006) Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. J Arid Environ 67:148–164
Article
Google Scholar
Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677
Article
Google Scholar
Brown DE, Minnich RA (1986) Fire and changes in creosote bush scrub of the western Sonoran Desert, California. Am Midl Nat 116:411–422
Article
Google Scholar
Brown JK, Smith JK (2000) Wildland fire in ecosystems: effects of fire on flora. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden
Google Scholar
Bukowski BE, Baker WL (2012) Historical fire regimes, reconstructed from land-survey data, led to complexity and fluctuation in sagebrush landscapes. Ecol Appl 23:546–564. doi:10.1890/12-0844.1
Article
Google Scholar
Callison J, Brotherson JD, Bowns JE (1985) The effects of fire on the Blackbrush [Coleogyne ramosissima] community of southwestern Utah. J Range Manag 38:535–538
Article
Google Scholar
Campbell CR (1991) Determination of total nitrogen in plant tissue by combustion. In: Plank CO (ed) Plant analysis reference procedures for the southern region of the United States. University of Georgia, Athens, pp 21–23
Google Scholar
D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87. doi:10.2307/2097282
Article
Google Scholar
Drezner T (2006) Plant facilitation in extreme environments: the non-random distribution of saguaro cacti (Carnegiea gigantea) under their nurse associates and the relationship to nurse architecture. J Arid Environ 65:46–61
Article
Google Scholar
Eidenshink J, Schwind B, Brewer K, Zhu Z-L, Quayle B, Howard S (2007) A project for monitoring trends in burn severity. J Assoc Fire Ecol 3:3
Article
Google Scholar
Engel EC, Abella SR (2011) Vegetation recovery in a desert landscape after wildfires: influences of community type, time since fire and contingency effects. J Appl Ecol 48:1401–1410. doi:10.1111/j.1365-2664.2011.02057.x
Article
Google Scholar
Esque TC, Young JA, Tracy CR (2010) Short-term effects of experimental fires on a Mojave Desert seed bank. J Arid Environ 74:1302–1308. doi:10.1016/j.jaridenv.2010.04.011
Article
Google Scholar
Evans RD, Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80:150–160
Article
Google Scholar
Ewing SA, Southard RJ, Macalady JL, Hartshorn AS, Johnson MJ (2007) Soil microbial fingerprints, carbon, and nitrogen in a Mojave Desert creosote-bush ecosystem. Soil Sci Soc Am J 71:469–475
Article
CAS
Google Scholar
Fonteyn PJ, Mahall BE (1981) An experimental analysis of structure in a desert plant community. J Ecol 69:883–896. doi:10.2307/2259643
Article
Google Scholar
Gibson AC, Rasoul Sharifi M, Rundel PW (2004) Resprout characteristics of creosote bush (Larrea tridentata) when subjected to repeated vehicle damage. J Arid Environ 57:411–429. doi:10.1016/S0140-1963(03)00120-4
Article
Google Scholar
Hamerlynck EP, McAuliffe JR (2008) Soil-dependent canopy die-back and plant mortality in two Mojave Desert shrubs. J Arid Environ 72:1793–1802. doi:10.1016/j.jaridenv.2008.05.002
Article
Google Scholar
Hamerlynck EP, McAuliffe JR, McDonald EV, Smith SD (2002) Ecological responses of two Mojave Desert shrubs to soil horizon development and soil water dynamics. Ecology 83:768–779
Article
Google Scholar
Hamerlynck EP, Smith SD, Huxman TE, McAuliffe JR (2004) Carbon isotope discrimination and foliar nutrient status of Larrea tridentata (creosote bush) in contrasting Mojave Desert soils. Oecologia 138:210–215. doi:10.1007/s00442-003-1437-7
Article
PubMed
Google Scholar
Haubensak K, D’Antonio C, Wixon D (2009) Effects of fire and environmental variables on plant structure and composition in grazed salt desert shrublands of the Great Basin (USA). J Arid Environ 73:643–650. doi:10.1016/j.jaridenv.2008.12.020
Article
Google Scholar
Hodgkinson KC (1992) Water relations and growth of shrubs before and after fire in a semi-arid woodland. Oecologia 90:467–473. doi:10.1007/BF01875439
Article
Google Scholar
Holzapfel C, Mahall BE (1999) Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80:1747–1761
Article
Google Scholar
Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293
CAS
Google Scholar
Horn KJ, McMillan BR, St. Clair SB (2012) Expansive fire in Mojave Desert shrubland reduces abundance and species diversity of small mammals. J Arid Environ 77:54–58. doi:10.1016/j.jaridenv.2011.10.003
Article
Google Scholar
Horn KJ, Nettles R, St. Clair SB (2015) Germination response to temperature and moisture to predict distributions of the invasive grass red brome and wildfire. Biol Invasions 1–9:1849–1857. doi:10.1007/s10530-015-0841-3
Article
Google Scholar
Humphrey RR (1974) Fire in the deserts and desert grasslands of North America. In: Kozlowski TT, Ahlgren CE (eds) Fire and ecosystems. USA Academic Press, New York, pp 365–401
Google Scholar
IPCC (2007) Climate Change 2007: The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Jones CS (1984) The effect of axis splitting on xylem pressure potentials and water movement in the desert shrub Ambrosia dumosa (Gray) Payne (Asteraceae). Bot Gaz 145:125–131
Article
Google Scholar
Keeley JE, Fotheringham CJ, Baer-Keeley M (2005) Determinants of postfire recovery and succession in Mediterranean-climate shrublands of California. Ecol Appl 15:1515–1534. doi:10.1890/04-1005
Article
Google Scholar
Lajtha K, Whitford WG (1989) The effect of water and nitrogen amendments on photosynthesis, leaf demography, and resource-use efficiency in Larrea tridentata, a desert evergreen shrub. Oecologia 80:341–348. doi:10.1007/BF00379035
Article
Google Scholar
Lei SA (1999) Postfire woody vegetation recovery and soil properties in blackbrush (Coleogyne ramosissima Torr.) shrubland ecotones. J Ariz-Nev Acad Sci 32:105–115
Google Scholar
Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003) Climate change effect on vegetation distribution, carbon, and fire in california. Ecol Appl 13:1667–1681. doi:10.1890/025295
Article
Google Scholar
Loik ME, St. Onge CD, Rogers J (2000) Post-fire recruitment of Yucca brevifolia and Yucca schidigera in Joshua Tree National Park, California. 2nd Interface Between Ecology and Land Development in California US Geological Survey OpenFile Report 0062 79–85
Mahall BE, Callaway RM (1992) Root communication mechanisms and intercommunity distributions of two mojave desert shrubs. Ecology 73:2145–2151. doi:10.2307/1941462
Article
Google Scholar
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5
Article
CAS
Google Scholar
Oechel WC, Strain BR, Odening WR (1972) Tissue water potential, photosynthesis, C-labeled photosynthate utilization, and growth in the desert shrub Larrea divaricata Cav. Ecol Monogr 42:128–141. doi:10.2307/1942260
Article
Google Scholar
Olsen SR, Watanabe FS (1957) A method to determine a phosphorus adsorption maximum of soils as measured by the langmuir isotherm1. Soil Sci Soc Am J 21:144. doi:10.2136/sssaj1957.03615995002100020004x
Article
CAS
Google Scholar
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Ravi S, D’Odorico P (2009) Post-fire resource redistribution and fertility island dynamics in shrub encroached desert grasslands: a modeling approach. Landsc Ecol 24:325–335. doi:10.1007/s10980-008-9307-7
Article
Google Scholar
Runyon EH (1934) The organization of the creosote bush with respect to drought. Ecology 15:128–138. doi:10.2307/1932782
Article
Google Scholar
Schlesinger WH, Fonteyn PJ, Reiners WA (1989) Effects of overland flow on plant water relations, erosion, and soil water percolation on a Mojave Desert landscape. Soil Sci Soc Am J 53:1567–1572. doi:10.2136/sssaj1989.03615995005300050045x
Article
Google Scholar
Schwinning S, Ehleringer JR (2001) Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. J Ecol 89:464–480
Article
Google Scholar
Schwinning S, Hooten MM (2009) Mojave desert root systems. In: Webb RH, Fenstermaker LF, Heaton JS, Hughson DL, McDonald EV, Miller DM (eds) The Mojave Desert: ecosystem processes and sustainability. University of Nevada Press, Reno, pp 278–311
Google Scholar
Smith SD, Hartsock TL, Nobel PS (1983) Ecophysiology of Yucca brevifolia, an arborescent monocot of the Mojave Desert. Oecologia 60:10–17
Article
Google Scholar
St. Clair SB, Monson SD, Smith EA, Cahill DG, Calder WJ (2009) Altered leaf morphology, leaf resource dilution and defense chemistry induction in frost-defoliated aspen (Populus tremuloides). Tree Physiol 29:1259–1268. doi:10.1093/treephys/tpp058
Article
CAS
PubMed
Google Scholar
Steers RJ, Allen EB (2011a) Native annual plant response to fire: an examination of invaded, 3 to 29 year old burned creosote bush scrub from the western Colorado Desert. Nat Resour Environ Issues 17:20
Google Scholar
Steers RJ, Allen EB (2011b) Fire effects on perennial vegetation in the western Colorado Desert, USA. Fire Ecol 7:59–74. doi:10.4996/fireecology.0703059
Article
Google Scholar
Stevenson BA, McDonald EV, Caldwell TG (2009) Root Patterns of Larrea tridentata in relation to soil morphology in Mojave Desert Sols of different Ages. In: Webb RH, Fenstermaker LF, Heaton JS, Hughson DL, McDonald EV, Miller DM (eds) The Mojave Desert: ecosystem processes and sustainability. University of Nevada Press, Reno, pp 278–311
Google Scholar
Strain BR (1969) Seasonal adaptations in photosynthesis and respiration in four desert shrubs growing in situ. Ecology 50:511–513. doi:10.2307/1933911
Article
Google Scholar
Vamstad MS, Rotenberry JT (2010) Effects of fire on vegetation and small mammal communities in a Mojave Desert Joshua tree woodland. J Arid Environ 74:1309–1318. doi:10.1016/j.jaridenv.2010.04.002
Article
Google Scholar
Vander Wall SB, Kuhn KM, Beck MJ (2005) Seed removal, seed predation, and secondary dispersal. Ecology 86:801–806.
Article
Google Scholar
Walker LR, Thompson DB, Landau FH (2001) Experimental manipulations of fertile islands and nurse plant effects in the Mojave Desert, USA. Western North American Naturalist 61:25–35
Google Scholar
Webb RH, Belnap J, Thomas KA (2009) Natural recovery from severe disturbance in the Mojave Desert. In: Webb RH, Fenstermaker LF, Heaton JS, Hughson DL, McDonald EV, Miller DM (eds) The Mojave Desert: ecosystem processes and sustainability. University of Nevada Press, Reno, pp 343–377
Google Scholar
Weigand J, Rogers J (2009) Active restoration for the Mojave Desert. In: Webb RH, Fenstermaker LF, Heaton JS, Hughson DL, McDonald EV, Miller DM (eds) The Mojave Desert: ecosystem processes and sustainability. University of Nevada Press, Reno, pp 378–409
Google Scholar
Zouhar K, Smith JK, Sutherland S, Brooks ML (2008) Wildland fire in ecosystems: fire and nonnative invasive plants. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden
Google Scholar