Plant Ecology

, Volume 216, Issue 11, pp 1523–1536 | Cite as

Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient

  • Isgard H. LemkeEmail author
  • Annette Kolb
  • Bente J. Graae
  • Pieter De Frenne
  • Kamal P. Acharya
  • Cristina Blandino
  • Jörg Brunet
  • Olivier Chabrerie
  • Sara A. O. Cousins
  • Guillaume Decocq
  • Thilo Heinken
  • Martin Hermy
  • Jaan Liira
  • Reto Schmucki
  • Anna Shevtsova
  • Kris Verheyen
  • Martin Diekmann


Phenotypic trait variation plays a major role in the response of plants to global environmental change, particularly in species with low migration capabilities and recruitment success. However, little is known about the variation of functional traits within populations and about differences in this variation on larger spatial scales. In a first approach, we therefore related trait expression to climate and local environmental conditions, studying two temperate forest herbs, Milium effusum and Stachys sylvatica, along a ~1800–2500 km latitudinal gradient. Within each of 9–10 regions in six European countries, we collected data from six populations of each species and recorded several variables in each region (temperature, precipitation) and population (light availability, soil parameters). For each plant, we measured height, leaf area, specific leaf area, seed mass and the number of seeds and examined environmental effects on within-population trait variation as well as on trait means. Most importantly, trait variation differed both between and within populations. Species, however, differed in their response. Intrapopulation variation in Milium was consistently positively affected by higher mean temperatures and precipitation as well as by more fertile local soil conditions, suggesting that more productive conditions may select for larger phenotypic variation. In Stachys, particularly light availability positively influenced trait variation, whereas local soil conditions had no consistent effects. Generally, our study emphasises that intra-population variation may differ considerably across larger scales—due to phenotypic plasticity and/or underlying genetic diversity—possibly affecting species response to global environmental change.


Climate change Global environmental change Milium effusum Phenotypic plasticity Intraspecific variation Stachys sylvatica 



We are grateful to the Research Foundation − Flanders (FWO) for funding the Scientific Research network ‘FLEUR’ ( We also thank Marion Ahlbrecht, Vincenzo Gonnelli, Tor Ivar Hansen, Emma Holmström, Astrid Karus, Sigrid Lindmo, Justine Louvel and Antonio Zoccola for field or lab assistance. Climate data of the Estonian sites were provided by courtesy of the Estonian Meteorological and Hydrological Institute. This paper was written while P.D.F. held a post-doctoral fellowship from the FWO.

Supplementary material

11258_2015_534_MOESM1_ESM.doc (51 kb)
Supplementary material 1 (doc 51 kb)
11258_2015_534_MOESM2_ESM.doc (36 kb)
Supplementary material 2 (doc 36 kb)
11258_2015_534_MOESM3_ESM.doc (25 kb)
Supplementary material 3 (doc 25 kb)
11258_2015_534_MOESM4_ESM.doc (33 kb)
Supplementary material 4 (doc 33 kb)


  1. Abasse T, Weber JC, Katkore B, Boureima M, Larwanou M, Kalinganire A (2011) Morphological variation in Balanites aegyptiaca fruits and seeds within and among parkland agroforests in eastern Niger. Agrofor Syst 81:57–66CrossRefGoogle Scholar
  2. Albert CH (2015) Intraspecific trait variability matters. J Veg Sci 26:7–8CrossRefGoogle Scholar
  3. Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010) Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98:604–613CrossRefGoogle Scholar
  4. Alpert P, Simms EL (2002) The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol Ecol 16:285–297CrossRefGoogle Scholar
  5. Baeten L, Hermy M, Verheyen K (2009) Environmental limitation contributes to the differential colonization capacity of two forest herbs. J Veg Sci 20:209–223CrossRefGoogle Scholar
  6. Baeten L, Vanhellemont M, De Frenne P, De Schrijver A, Hermy M, Verheyen K (2010) Plasticity in response to phosphorus and light availability in four forest herbs. Oecologia 163:1021–1032CrossRefPubMedGoogle Scholar
  7. Baythavong BS (2011) Linking the spatial scale of environmental variation and the evolution of phenotypic plasticity: selection favors adaptive plasticity in fine-grained environments. Am Nat 178:75–87CrossRefPubMedGoogle Scholar
  8. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377PubMedCentralCrossRefPubMedGoogle Scholar
  9. Benito Garzón M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Global Ecol Biogeogr 20:766–778CrossRefGoogle Scholar
  10. Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61:2925–2941CrossRefPubMedGoogle Scholar
  11. Carlucci MB, Vanderlei JD, Pillar VD, Duarte LDS (2015) Between- and within-species trait variability and the assembly of sapling communities in forest patches. J Veg Sci 26:21–31CrossRefGoogle Scholar
  12. Chandler TJ, Gregory S (1976) The climate of the British Isles. Longmans Group, London and New YorkGoogle Scholar
  13. Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  14. Cochrane A, Yates CJ, Hoyle GL, Nicotra AB (2014) Will among-population variation in seed traits improve the chance of species persistence under climate change? Global Ecol Biogeogr 24:12–24CrossRefGoogle Scholar
  15. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  16. De Frenne P, Kolb A, Verheyen K, Brunet J, Chabrerie O, Decocq G, Diekmann M, Eriksson O, Heinken T, Hermy M, Jõgar Ü, Stanton S, Quataert P, Zindel R, Zobel M, Graae BJ (2009) Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbs. Global Ecol Biogeogr 18:641–651CrossRefGoogle Scholar
  17. De Frenne P, Graae BJ, Kolb A, Shevtsova A, Baeten L, Brunet J, Chabrerie O, Cousins SAO, Decocq G, Dhondt R, Diekmann M, Gruwez R, Heinken T, Hermy M, Öster M, Saguez R, Stanton S, Tack W, Vanhellemont M, Verheyen K (2011) An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient. Ecography 34:132–140CrossRefGoogle Scholar
  18. Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122CrossRefGoogle Scholar
  19. Elemans M (2004) Light, nutrients and the growth of herbaceous forest species. Acta Oecol 26:197–202CrossRefGoogle Scholar
  20. Fajardo A, Piper F (2011) Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytol 189:259–271CrossRefPubMedGoogle Scholar
  21. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178CrossRefPubMedGoogle Scholar
  22. Graae BJ (2002) The role of epizoochorous seed dispersal of forest plant species in a fragmented landscape. Seed Sci Res 12:113–121CrossRefGoogle Scholar
  23. Graae BJ, Verheyen K, Kolb A, Van Der Veken S, Heinken T, Chabrerie O, Diekmann M, Valtinat K, Zindel R, Karlsson E, Ström L, Decocq G, Hermy M, Baskin CC (2009) Germination requirements and seed mass of slow- and fast-colonizing temperate forest herbs along a latitudinal gradient. Ecoscience 16:248–257CrossRefGoogle Scholar
  24. Grassein F, Till-Bottraud I, Lavorel S (2010) Plant resource-use strategies: the importance of phenotypic plasticity in response to a productivity gradient for two subalpine species. Ann Bot 106:637–645PubMedCentralCrossRefPubMedGoogle Scholar
  25. Grime JP, Crick JC, Rincon JE (1986) The ecological significance of plasticity. In: Jennings DH, Trewavas AJ (eds) Plasticity in plants. Cambridge University Press, Cambridge, pp 5–29Google Scholar
  26. Grime JP, Hodgson JC, Hunt R (1988) Comparative plant ecology. A functional approach to common British species. Unwin Hyman, LondonGoogle Scholar
  27. Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22CrossRefGoogle Scholar
  28. Hof C, Levinsky I, Araújo MB, Rahbek C (2011) Rethinking species’ ability to cope with rapid climate change. Global Change Biol 17:2987–2990CrossRefGoogle Scholar
  29. Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623CrossRefPubMedGoogle Scholar
  30. Hultén E, Fries M (1986) Atlas of the north European vascular plants: north of the tropic of cancer I–III. Koeltz Scientific Books, KönigsteinGoogle Scholar
  31. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of working groups I, II an III to the Fifth Assessment Report. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  32. Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020CrossRefGoogle Scholar
  33. Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140CrossRefGoogle Scholar
  34. Kattge J, Díaz S, Lavorel S et al (2011) TRY—a global database of plant traits. Global Change Biol 17:2905–2935CrossRefGoogle Scholar
  35. Kumordzi BB, Wardle DA, Freschet GT (2015) Plant assemblages do not respond homogenously to local variation in environmental conditions: functional responses differ with species identity and abundance. J Veg Sci 26:32–45CrossRefGoogle Scholar
  36. Lemke IH, Kolb A, Diekmann M (2012) Region and site conditions affect phenotypic trait variation in five forest herbs. Acta Oecol 39:18–24CrossRefGoogle Scholar
  37. Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848CrossRefPubMedGoogle Scholar
  38. Mitchell RM, Bakker JD (2013) Quantifying and comparing intraspecific functional trait variability: a case study with Hypochaeris radicata. Funct Ecol 28:258–269CrossRefGoogle Scholar
  39. Moreira B, Tavsanoglu Ç, Pausas JG (2012) Local versus regional intraspecific variability in regeneration traits. Oecologia 168:671–677CrossRefPubMedGoogle Scholar
  40. Moustakas A, Evans ER (2013) Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models. PLoS ONE 8:e71125PubMedCentralCrossRefPubMedGoogle Scholar
  41. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692CrossRefPubMedGoogle Scholar
  42. Paletto A, Tosi V (2009) Forest canopy cover and canopy closure: comparison of assessment techniques. Eur J For Res 129:265–272CrossRefGoogle Scholar
  43. Pannek A, Ewald J, Diekmann M (2013) Resource-based determinants of range sizes of forest vascular plants in Germany. Global Ecol Biogeogr 22:1019–1028CrossRefGoogle Scholar
  44. Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core Team (2009) nlme: linear and nonlinear mixed effect models. R Package Version 3:1–96Google Scholar
  45. Poorter H, Niinemets Ü, Walter A, Fiorani F, Schurr U (2010) A method to construct dose-response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. J Exp Bot 61:2043–2055CrossRefPubMedGoogle Scholar
  46. Ratcliffe DA (1968) An ecological account of atlantic briophytes in the British Isles. New Phytol 67:365–439CrossRefGoogle Scholar
  47. R Development Core Team (2009) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna (
  48. Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Ann Rev Ecol Syst 17:667–693CrossRefGoogle Scholar
  49. Shipley B (2006) Net assimilation rate, specific leaf area and leaf mass ratio: which is mostly correlated with relative growth rate? A meta-analysis. Funct Ecol 20:565–574CrossRefGoogle Scholar
  50. Siefert A, Fridley JD, Ritchie ME (2014) Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter? PLoS ONE 9:e111189PubMedCentralCrossRefPubMedGoogle Scholar
  51. Svenning J-C, Normand S, Skov F (2008) Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31:316–326CrossRefGoogle Scholar
  52. Taylor K, Rowland P (2010) Biological Flora of the British Isles: Stachys sylvatica L. J Ecol 98:1476–1489CrossRefGoogle Scholar
  53. Thuiller W, Albert CH, Dubuis A, Randin C, Guisan A (2010) Variation in habitat suitability does not always relate to variation in species’ plant functional traits. Biol Lett 6:120–123PubMedCentralCrossRefPubMedGoogle Scholar
  54. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302CrossRefGoogle Scholar
  55. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond B 270:467–473CrossRefGoogle Scholar
  56. Tyler T (2002) Geographic structure of genetic variation in the widespread woodland grass Milium effusum L. A comparison between two regions with contrasting history and geomorphology. Genome 45:1248–1256CrossRefPubMedGoogle Scholar
  57. Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763CrossRefPubMedGoogle Scholar
  58. Vázquez DP, Stevens RD (2004) The latitudinal gradient in niche breadth: concepts and evidence. Am Nat 164:E1–E19CrossRefPubMedGoogle Scholar
  59. Violle C, Enquist BJ, McGill BJ, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252CrossRefPubMedGoogle Scholar
  60. Walsh C, Mac Nally R (2008) Hier. part: hierarchical partitioning. R package version 1.0-3Google Scholar
  61. Walther G-R (2010) Community and ecosystem responses to recent climate change. Phil Trans R Soc B 365:2019–2024PubMedCentralCrossRefPubMedGoogle Scholar
  62. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar
  63. Weiner J, Thomas SC (1986) Size variability and competition in plant monocultures. Oikos 47:211–222CrossRefGoogle Scholar
  64. Willis KJ (1996) Where did all the flowers go? The fate of temperate European flora during glacial periods. Endeavour 20:110–114CrossRefGoogle Scholar
  65. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005) Modulation of leaf economic traits and trait relationships by climate. Global Ecol Biogeogr 14:411–421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Isgard H. Lemke
    • 1
    Email author
  • Annette Kolb
    • 1
  • Bente J. Graae
    • 2
  • Pieter De Frenne
    • 3
  • Kamal P. Acharya
    • 2
  • Cristina Blandino
    • 4
  • Jörg Brunet
    • 5
  • Olivier Chabrerie
    • 6
  • Sara A. O. Cousins
    • 7
  • Guillaume Decocq
    • 6
  • Thilo Heinken
    • 8
  • Martin Hermy
    • 9
  • Jaan Liira
    • 10
  • Reto Schmucki
    • 11
    • 12
  • Anna Shevtsova
    • 13
  • Kris Verheyen
    • 3
  • Martin Diekmann
    • 1
  1. 1.Vegetation Ecology and Conservation Biology, Institute of Ecology, FB2University of BremenBremenGermany
  2. 2.Department of BiologyNTNUTrondheimNorway
  3. 3.Forest & Nature LabGhent UniversityMelle-GontrodeBelgium
  4. 4.Comparative Seed Biology Section, Comparative Plant and Fungal Biology DepartmentRoyal Botanic Gardens, KewWest SussexUK
  5. 5.Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
  6. 6.Ecologie et Dynamique des Systèmes AnthropisésJules Verne University of PicardieAmiensFrance
  7. 7.Department of Physical GeographyStockholm UniversityStockholmSweden
  8. 8.Biodiversity and Systematic BotanyUniversity of PotsdamPotsdamGermany
  9. 9.Division of Forest, Nature and LandscapeK.U. LeuvenLeuvenBelgium
  10. 10.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  11. 11.UMR7204, MNHN-CNRS-UPMCCESCOParisFrance
  12. 12.Centre de Synthèse et d’Analyse sur la BiodiversitéAix-en-ProvenceFrance
  13. 13.Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden

Personalised recommendations