Advertisement

Plant Ecology

, Volume 217, Issue 2, pp 183–192 | Cite as

Restoring population structure and dynamics in translocated species: learning from wild populations

  • Thomas Abeli
  • Paolo Cauzzi
  • Graziano Rossi
  • Michele Adorni
  • Ilda Vagge
  • Gilberto Parolo
  • Simone OrsenigoEmail author
Article

Abstract

Conservation of Leucojum aestivum, a wetland-dependent species distributed in Europe and west Asia, should aim to reduce the fragmentation of wild stands, through the establishment of new populations. However, density-dependent dynamics occur in L. a estivum. For instance, fruit set and seed set increase with increasing plant density. In this study, we evaluate the effect of plant density on translocation success of two recently established populations of L. a estivum. Twenty-six populations of L. a estivum were investigated in northern Italy to find out differences in population traits (size, density, age structure, and reproductive performance) between populations from different habitats. Data obtained were used to establish two new populations of the species differing for population density (high H, mirroring the typical plant density of a wild population in Salix alba woods and low L, in which plant density was halved compared to H), to evaluate the role of density-dependent dynamics on the translocation success. 4 years after the translocation, H produced seedlings, while L did not. Moreover, H produced a significantly higher number of fruits per fruiting plant and higher fruit set. Seed set was also greater in H than in L, while mortality was greater in L than in H, but differences were not significant. Our results suggest that population density is an important factor to account for in newly established populations, especially in those species showing density-dependent population dynamics. Moreover, the imitation of successful within-population dynamics occurring in natural stable populations may increase the translocation success.

Keywords

Density Habitat fragmentation Leucojum aestivum Pollinator attraction Reintroduction Reproduction 

Notes

Acknowledgments

The authors are grateful to V. Dominione, A. Morini, L. Zubani, S. Pedrini, E. Vegini, F. Nai Oleari, M. Cere, C. Albrecht and M.I. Manisco, (University of Pavia), M. Donati and L. Ghillani for their valuable contribution during field work. The authors thank D. Matthies (University of Marburg) for his precious suggestions during the study of wild populations. The authors thank E. Ottolini and E. Fior (LIFE07 NAT/IT/000499 “Pianura Parmense” Staff Members) for their logistic and practical support during the translocation. The authors are also grateful to A. Manzi and S. Panzeri (University of Milan) for the determination of VOC in flowers of L. a estivum. The translocation has received financial support from the LIFE + project 2007 NAT/IT/000499 “Pianura Parmense.”

Supplementary material

11258_2015_529_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (docx 18 kb)
11258_2015_529_MOESM2_ESM.eps (3.4 mb)
Supplementary material 2 (eps 3456 kb)
11258_2015_529_MOESM3_ESM.eps (10.9 mb)
Supplementary material 3 (eps 11166 kb)

References

  1. Abeli T, Jäkäläniemi A, Wannas L, Mutikainen P, Tuomi J (2013) Pollen limitation and fruiting failure related to canopy closure in Calypso bulbosa (Orchidaceae), a northern food-deceptive orchid with a single flower. Bot J Linn Soc 171:744–750. doi: 10.1111/boj.12014 CrossRefGoogle Scholar
  2. Abeli T, Rossi G, Smolders AJP, Orsenigo S (2014) Nitrogen pollution negatively affects Stratiotes aloides in Central-Eastern Europe. Implications for translocation actions. Aquat Conserv 24:724–729. doi: 10.1002/aqc.2497 CrossRefGoogle Scholar
  3. Albrecht MA, McCue KA (2010) Changes in demographic processes over long time scales reveal the challenge of restoring an endangered plant. Restor Ecol 18:235–243. doi: 10.1111/j.1526-100X.2009.00584.x CrossRefGoogle Scholar
  4. Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421. doi: 10.1890/03-8024 CrossRefGoogle Scholar
  5. Aurambout JP, Endress AG, Deal BM (2005) A spatial model to estimate habitat fragmentation and its consequences of long-term survival of animal populations. Environ Monit Assess 109:199–225. doi: 10.1007/s10661-005-6266-1 CrossRefPubMedGoogle Scholar
  6. Ayan KA, Sait Kurtal E, Cüneit C, Kevseroglu K (2004) Bulb yield and some plant characters of summer snow flake (Leucojum aestivum L.) under shading as affected by GA3 and NAA at different concentrations. J Agron 3:296–300. doi: 10.3923/ja.2004.296.300 CrossRefGoogle Scholar
  7. Berkov S, Ivanov I, Georgiev V, Codina C, Pavlov A (2014) Galanthamine biosynthesis in plant in vitro systems. Eng Life Sci 14:643–650. doi: 10.1002/elsc.201300159 CrossRefGoogle Scholar
  8. Bilz M, Kell SP, Maxted N, Lansdown RV (2011) European red list of vascular plants. Publications Office of the European Union, LuxembourgGoogle Scholar
  9. Biondi E, Blasi C, Allegrezza M, Anzellotti I, Azzella MM et al (2014) Plant communities of Italy: the vegetation prodrome. Plant Biosyst 148:728–814. doi: 10.1080/11263504.2014.948527 CrossRefGoogle Scholar
  10. Bogdanova Y, Stoeva T, Yanev S, Pandova B, Molle E, Burrus M, Stanilova M (2009) Influence of plant origin on propagation capacity and alkaloid biosynthesis during long-term in vitro cultivation of Leucojum aestivum L. In vitro cell. Dev Plant 45:458–465. doi: 10.1007/s11627-008-9178-2 CrossRefGoogle Scholar
  11. Burd M (1994) Bateman’s Principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:63–139. doi: 10.1007/BF02856594 CrossRefGoogle Scholar
  12. Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y (2014) Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J Ecol 102:845–856. doi: 10.1111/1365-2745.12232 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cursach J, Rita J (2012) Reproductive biology and reproductive output assessment in natural and introduced subpopulations of Apium bermejoi, a ‘Critically Endangered’ endemic plant from Menorca (western Mediterranean). Nord J Bot 30:754–768. doi: 10.1111/j.1756-1051.2012.01437.x CrossRefGoogle Scholar
  14. Dahlgren JP, Östergård H, Ehrlén J (2014) Local environment and density-dependent feedbacks determine population growth in a forest herb. Oecologia 176:1023–1032. doi: 10.1007/s00442-014-3073-9 CrossRefPubMedGoogle Scholar
  15. Dauber J, Biesmeijer JC, Gabriel D, Kunin WE, Lamborn E, Meyer B et al (2010) Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach. J Ecol 98:188–196. doi: 10.1111/j.1365-2745.2009.01590.x CrossRefGoogle Scholar
  16. Demier A (2014) Medical resource value appraisal for Leucojum aestivum in Turkey. Am J Alzheimers Dis 29:448–451. doi: 10.1177/1533317514535334 CrossRefGoogle Scholar
  17. Ellenberg H (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobot 18:9–166Google Scholar
  18. Ellenberg H (1988) Vegetation ecology of central europe, 4th edn. Cambridge University Press, CambridgeGoogle Scholar
  19. Falk DA, Palmer MA, Zedler JB (2004) Foundations of restoration ecology. Island Press, WashingtonGoogle Scholar
  20. Gehring TM, Swihart RK (2003) Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biol Conserv 109:283–295. doi: 10.1016/S0006-3207(02)00156-8 CrossRefGoogle Scholar
  21. Godefroid S, Piazza C, Rossi G, Buord S, Stevens A, Aguraiuja R et al (2011) How successful are plant species reintroductions? Biol Conserv 144:672–682. doi: 10.1016/j.biocon.2010.10.003 CrossRefGoogle Scholar
  22. Halsey SJ, Bell TJ, McEachern K, Pavlovic NB (2015) Comparison of reintroduction and enhancement effects on metapopulation viability. Restor Ecol 23:375–384. doi: 10.1111/rec.12191 CrossRefGoogle Scholar
  23. Hegland SJ (2014) Floral neighbourhood effects on pollination success in red clover are scale-dependent. Funct Ecol 28:561–568. doi: 10.1111/1365-2435.12223 CrossRefGoogle Scholar
  24. Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol 31:532–538. doi: 10.1111/j.1365-2311.2006.00812.x CrossRefGoogle Scholar
  25. Kirchner F, Robert A, Colas B (2006) Modelling the dynamics of introduced populations in the narrow-endemic Centaurea corymbosa: a demo-genetic integration. J Appl Ecol 43:1011–1021. doi: 10.1111/j.1365-2664.2006.01179.x CrossRefGoogle Scholar
  26. Lammi A, Kuitunen M (1995) Deceptive pollination of Dactylorhiza incarnata : an experimental test of the magnet species hypothesis. Oecologia 101:500–503CrossRefGoogle Scholar
  27. Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269. doi: 10.1007/BF02763457 CrossRefGoogle Scholar
  28. Landolt E (1977) Ökologische Ziegerwerte zu Schweizer Flora. Veröff. Geobot. Inst. ETH, Stiftung Rübel, ZürichGoogle Scholar
  29. Manzo A, Panseri S, Vagge I, Giorgi A (2014) Volatile fingerprint of Italian populations of orchids using solid phase microextraction and gas chromatography coupled with mass spectrometry. Molecules 19:7913–7936. doi: 10.3390/molecules19067913 CrossRefPubMedGoogle Scholar
  30. Maschinski J, Haskins KE (2012) Plant reintroduction in a changing climate, promises and perils. Island press, Washington, DCCrossRefGoogle Scholar
  31. Menges ES (2008) Restoration demography and genetics of plants: when is a translocation succesful? Aust J Bot 56:187–196. doi: 10.1071/BT07173 CrossRefGoogle Scholar
  32. Paracchini ML, Bulgheroni C, Borreani G, Tabacco E, Banterle A, Bertoni D, Rossi G, Parolo G, Origgi R, De Paola C (2015) A diagnostic system to assess sustainability at a farm level, the SOSTARE model. Agr Syst 133:35–53. doi: 10.1016/j.agsy.2014.10.004 CrossRefGoogle Scholar
  33. Parolo G, Abeli T, Rossi G, Dowgiallo G, Matthies D (2011) Biological Flora of Central Europe: Leucojum aestivum L. Perspect Plant Ecol 13:319–330. doi: 10.1016/j.ppees.2011.05.004 CrossRefGoogle Scholar
  34. Poulsen JR, Osenberg CW, Clark CJ, Levey DJ, Bolker BM (2007) Plants as reef fish: fitting the functional form of seedling recruitment. Am Nat 170:167–183. doi: 10.1086/518945 CrossRefPubMedGoogle Scholar
  35. Rossi G, Montagnani C, Gargano D, Peruzzi L, Abeli T, Ravera S, et al. (eds) (2013) Lista Rossa della Flora Italiana. 1. Policy species e altre specie minacciate. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del MareGoogle Scholar
  36. Sih A, Jonsson BG, Luikart G (2000) Habitat loss: ecological, evolutionary and genetic consequences. Trends Ecol Evol 15:132–134. doi: 10.1016/S0169-5347(99)01799-1 CrossRefGoogle Scholar
  37. Steven JC, Waller DM (2007) Isolation affects reproductive success in low-density but not high-density populations of two wind-pollinated Thalictrum species. Plant Ecol 190:131–141. doi: 10.1007/s11258-006-9196-2 CrossRefGoogle Scholar
  38. Van der Meer S, Jacquemyn H (2015) Genetic diversity and spatial genetic structure of the grassland perennial Saxifraga granulata along two river systems. PLoS One 10(6):e0130463. doi: 10.1371/journal.pone.0130463 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Thuiller W (2007) Climate change and ecologist. Nature 448:550–552. doi: 10.1038/448550a CrossRefPubMedGoogle Scholar
  40. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. doi: 10.1016/0169-5347(96)10045-8 CrossRefPubMedGoogle Scholar
  41. Warren RJ II, Bahn V, Bradford MA (2011) The interaction between propagule pressure, habitat suitability and density-dependent reproduction in species invasion. Oikos 121:874–881. doi: 10.1111/j.1600-0706.2011.20174.x CrossRefGoogle Scholar
  42. Waser NM, Campbell DR, Price MV, Brody AK (2010) Density-dependent demographic responses of a semelparous plant to natural variation in seed rain. Oikos 119:1929–1935. doi: 10.1111/j.1600-0706.2010.18429.x CrossRefGoogle Scholar
  43. Weed AS, Schwarzländer M (2014) Density dependence, precipitation and biological control agent herbivory influence landscape-scale dynamics of the invasive Eurasian plant Linaria dalmatica. J App Ecol 51:825–834. doi: 10.1111/1365-2664.12226 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Thomas Abeli
    • 1
    • 2
  • Paolo Cauzzi
    • 3
  • Graziano Rossi
    • 1
  • Michele Adorni
    • 4
  • Ilda Vagge
    • 3
  • Gilberto Parolo
    • 5
  • Simone Orsenigo
    • 3
    Email author
  1. 1.Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
  2. 2.IUCN/SSC Reintroduction Specialist GroupAbu DhabiUAE
  3. 3.Department of Agricultural and Environmental Sciences-Production, Landscape, AgroenergyUniversity of MilanMilanItaly
  4. 4.LIFE07 NAT/IT/000499 “Pianura Parmense” Staff MemberParmaItaly
  5. 5.PaviaItaly

Personalised recommendations