Plant Ecology

, Volume 217, Issue 2, pp 193–206 | Cite as

Acquiring baseline information for successful plant translocations when there is no time to lose: the case of the neglected Critically Endangered Narcissus cavanillesii (Amaryllidaceae)

  • David Draper MuntEmail author
  • Isabel Marques
  • José M. Iriondo


The success of plant translocations rely heavily on obtaining suitable baseline information on the species to correctly identify the critical factors that condition population viability of the species, as well as to know how to successfully conduct the translocation. This baseline information is normally not available at the time translocations are conceived and often the timeframe to obtain this information is very short. In 2000, it was urgent to translocate a newly discovered population of a little known autumnal plant (Narcissus cavanillesii A. Barra & G. López) in Portugal threatened by the construction of the Alqueva dam. Thirteen years after the translocation and annual monitoring, it was found that the translocated population has recovered the number of mature individuals available before the translocation. The aim of this study was to critically review the baseline information gathered for the translocation of N. cavanillesii and to assess the relevance of the different components. The systematically planned acquisition of baseline information made in a short period of time was in great part responsible for the successful translocation.


Translocation Monitoring Evaluating success Hydro-electric project Alqueva Dam Portugal 



We thank EDIA biologists, J. Almeida, A. Freitas, and C. Azinheira. We also thank the team from the Department of Geosciences, Universidade de Évora (Portugal) led by R. Varela and PM. Madureira allowed the rescue of N. cavanillesii in the best possible conditions. The acquisition of field data would not have been possible without the collaboration of E. Salvado, S. Albano, A. Rosselló-Graell, and MJ Albert. The authors thank L. De Hond for her linguistic assistance, D. Coutinho for permission to work on his property, and two anonymous reviewers for useful comments on a previous version. The translocation was performed within the framework of a conservation program for N. cavanillesii promoted by EDIA, S. A. and co-financed by EDIA, S. A. and European Regional Development Funds (ERDF).

Supplementary material

11258_2015_524_MOESM1_ESM.docx (5 mb)
Supplementary material 1 (DOCX 5124 kb)


  1. Anon. (1992) Directive 92/43 of the Council of the European Community on the Conservation of Habitats and Wild Fauna and Flora. European Community, BrusselsGoogle Scholar
  2. ANPC (Australian Network for Plant Conservation) (1997) Guidelines for the translocation of threatened plants in Australia. ANCP, Canberra, Australian Capital Territory, AustraliaGoogle Scholar
  3. Barkham JP (1980) Population dynamics of the wild daffodil (Narcissus pseudonarcissus). II. Changes in number of shoots and flowers, and the effect of bulb depth on growth and reproduction. J Ecol 68:635–664CrossRefGoogle Scholar
  4. Bullock JM (1998) Community translocation in Britain: setting objectives and measuring consequences. Biol Conserv 84:199–214CrossRefGoogle Scholar
  5. Bullock JM, Hodder KH, Manchester SJ, Stevenson MJ (1997) Review of information, policy and legislation on species translocation. JNCC Report 261. Joint Nature Conservation Committee, PeterboroughGoogle Scholar
  6. Clewell A, Rieger J, Munro J (2000) Guidelines for developing and managing ecological restoration projects. Society for Ecological Restoration. Accessed 12 July 2004
  7. Devesa J (1995) Vegetación y Flora de Extremadura. Universitas Editorial, BadajozGoogle Scholar
  8. Draper D (2010) Assessment of environmental and human factors that affect the current distribution of rare plant species in the Iberian Peninsula. Ph.D. Dissertation. Universidad Rey Juan CarlosGoogle Scholar
  9. Draper D, Marques I, Iriondo JM (in press) Successful translocation of Narcissus cavanillesii A. Barra & G. López (Amaryllidaceae) in Portugal. In Soorae, P. S. (ed.). Global Re-introduction Perspectives: 2015. Further case studies from around the globe. Gland, Switzerland: IUCN/SSC Re-introduction Specialist Group and Abu Dhabi, UAE: Environment Agency-Abu DhabiGoogle Scholar
  10. Fernandes A, Fernandes R (1945) On the origin of Tapeinanthus humilis Herb. Herbertia 12:85–97Google Scholar
  11. García MB, Guzmán D, Goñi D (2002) An evaluation of the status of five threatened plant species in the Pyrenees. Biol Conserv 103:151–161CrossRefGoogle Scholar
  12. Godefroid S, Piazza C, Rossi G, Buord S, Stevens AD, Aguraiuja R, Cowell C, Weekley CW, Vogg G, Iriondo JM, Johnson I, Dixon B, Gordon D, Magnanon S, Valentin B, Bjureke K, Lavergne C, Koopman R, Vicens M, Virevaire M, Vanderborght T (2011) How successful are plant species reintroductions? Biol Conserv 144:672–682CrossRefGoogle Scholar
  13. González-Benito E, Martín C, Iriondo JM (1995) Autoecology and conservation of Erodium paularense Fdez. Glez. and Izco. Biol Conserv 72:55–60CrossRefGoogle Scholar
  14. Guerrant EO, Kaye T (2007) Reintroduction of rare and endangered plants: common factors, questions and approaches. Aust J Bot 55:362–370CrossRefGoogle Scholar
  15. Harbone JB (1993) Ecological Biochemistry, 4th edn. Academic Press, LondonGoogle Scholar
  16. Howald AM (1996) Translocation as a mitigation strategy: Lessons from California. In: Falk DA, Millar CI, Olwell M (eds) Restoring diversity: strategies for the reintroduction of endangered plants. Island Press, Washington, DC, pp 293–330Google Scholar
  17. IUCN (1998) IUCN Guidelines for Re-introductions. Prepared by the IUCN/SSC Re-introduction Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK. Available from the IUCN Publications Services Unit or Accessed 9 May 2001
  18. IUCN (2001) IUCN Red List Categories and Criteria. Version 3.1. IUCN Species Survival Commission, Gland, Switzerland & CambridgeGoogle Scholar
  19. IUCN (2012) Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCNGoogle Scholar
  20. Malato-Beliz J (1977) Braxireon humile (Cav.) Rafin-Nouvelle Amaryllidacee pour le Portugal. Candollea 32:249–254Google Scholar
  21. Marques I (2002) Caracterização da fenologia e biologia reprodutiva de Narcissus serotinus L. (Amaryllidaceae). Dissertation, Faculdade de Ciências da Universidade de LisboaGoogle Scholar
  22. Marques I, Draper D (2012) Seed germination and longevity of autumn-flowering and autumn-seed producing Mediterranean geophytes. Seed Sci Res 22:299–309CrossRefGoogle Scholar
  23. Marques I, Rosselló-Graell A, Draper D (2005) Narcissus x perezlarae Font Quer (Amaryllidaceae). A new taxon for the portuguese flora. Flora Mediterranea 15:211–217Google Scholar
  24. Marques I, Rosselló-Graell A, Draper D, Iriondo JM (2007) Pollination patterns limit hybridization between two sympatric species of Narcissus (Amaryllidaceae). Am J Bot 94:1352–1359CrossRefPubMedGoogle Scholar
  25. Marques I, Rosselló-Graell A, Draper D (2009) Narcissus cavanillesii en la cuenca del Guadiana: hacia una conservación transfronteriza. Acta Botanica Malacitana 34:269–272Google Scholar
  26. Marques I, Nieto Feliner G, Draper D, Martins-Loução MA, Fuertes Aguilar J (2010) Unraveling cryptic reticulate relationships and the origin of orphan hybrid disjunct populations in Narcissus. Evolution 64:2353–2368PubMedGoogle Scholar
  27. Marques I, Nieto Feliner G, Martins-Loução MA, Fuertes Aguilar J (2011) Fitness in Narcissus hybrids: low fertility is overcome by early hybrid vigour, absence of exogenous selection and high bulb propagation. J Ecol 99:1508–1519CrossRefGoogle Scholar
  28. Marques I, Fuertes Aguilar J, Martins-Loução MA, Nieto Feliner G (2012) Spatial–temporal patterns of flowering asynchrony and pollinator fidelity in hybridizing species of Narcissus. Evol Ecol 26:1433–1450CrossRefGoogle Scholar
  29. Maschinski J, Duquesnel J (2006) Successful reintroductions of the endangered long-lived Sargent’s cherry palm, Pseudophoenix sargentii, in the Florida Keys. Biol Conserv 134:122–129CrossRefGoogle Scholar
  30. McLean, IFG (2003) A Habitats Translocation Policy for Britain. Joint Nature Conservation Committee in conjunction with The Countryside Agency for Wales, English Nature and Scottish Natural HeritageGoogle Scholar
  31. Menges ES (2008) Restoration demography and genetics of plants: when is a translocation successful? Aust J Bot 56:187–196CrossRefGoogle Scholar
  32. Menges ES, Dolan RW (1998) Demographic viability of populations of Silene regia in midwestern prairies: relationships with fire management, genetic variation, geographic location, population size and isolation. J Ecol 86:63–78CrossRefGoogle Scholar
  33. Pavlik BM (1996) Defining and measuring success. In: Falk DA, Millar CI, Olwell M (eds) Restoring Diversity: Strategies for the Reintroduction of Endangered Plants. Island Press, Washington, DC, pp 127–155Google Scholar
  34. Rosselló-Graell A, Draper D, Marques I, Salvado E, Albano S, Albert MJ, Iriondo JM, Correia AID (2001) Projecto de salvaguarda de Narcissus cavanillesii A. Barra & G. López como medida de minimização da construção da barragem do Alqueva. Primeiro Relatório Parcial de Progresso. Museu, Laboratório e Jardim Botânico da Universidade de Lisboa. Lisboa, PortugalGoogle Scholar
  35. Rosselló-Graell A, Salvado E, Albano S, Draper D, Correia AID (2003) Conservation programme for Narcissus cavanillesii (Amaryllidaceae) in Portugal. Bocconea 16:853–856Google Scholar
  36. Rosselló-Graell A, Marques I, Draper D (2004) Segunda localidad de Narcissus cavanillesii A. Barra et G. López en Portugal. Acta Botanica. Malacitana 28:196–197Google Scholar
  37. Rosselló-Graell A, Marques I, Draper D, Iriondo JM (2007) The role of breeding system in the reproductive success of Narcissus cavanillesii A. Barra & G. López (Amaryllidaceae). Bocconea 21:359–365Google Scholar
  38. Sánchez-Palomares O, Sánchez-Serrano F, Carretero MP (1999) Modelos y cartografía de estimaciones climáticas termopluviométricas para la España peninsular. INIA, MadridGoogle Scholar
  39. Santos MJ, Pedroso NM, Ferreira JP, Matos HM, Sales-Luís T, Pereira I, Baltazar C, Grilo C, Cândido AT, Sousa I, Santos-Reis M (2008) Assessing dam implementation impact on threatened carnivores: the case of Alqueva in SE Portugal. Environ Monit Assess 142:47–64. doi: 10.1007/s10661-007-9907-8 CrossRefPubMedGoogle Scholar
  40. Schmida A, Dafni A (1989) Blooming stategies, flower size and advertising in the “Lily-Group” geophytes in Israel. Herbetia 45(1&2):111–123Google Scholar
  41. SER (Society for Ecological Restoration Science and Policy Working Group) (2002) The SER Primer on Ecological Restoration. Accessed 12 July 2004
  42. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Company, New YorkGoogle Scholar
  43. Sutter RD (1996) Monitoring. In: Falk DA, Millar CI, Olwell M (eds) Restoring Diversity: Strategies for Reintroduction of Endangered Plants. Island Press, Washington, DC, pp 235–265Google Scholar
  44. Valdés B, Talavera S, Fernández Galiano E (1987) Flora Vascular de Andalucía Occidental, vol III. Ketres Editora S.A, Barcelona, p 472Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • David Draper Munt
    • 1
    Email author
  • Isabel Marques
    • 2
    • 3
  • José M. Iriondo
    • 4
  1. 1.Centro de Ecologia, Evolução e Alterações Ambientais (CE3C - Centre for Ecology, Evolution and Environmental Changes)LisbonPortugal
  2. 2.Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de HuescaUniversidad de ZaragozaHuescaSpain
  3. 3.UBC Botanical Garden & Centre for Plant Research, and Department of BotanyUniversity of British ColumbiaVancouverCanada
  4. 4.Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMadridSpain

Personalised recommendations