Adiku S, Reichstein M, Lohila A, Dinh NQ, Aurela M, Laurila T, Lueers J, Tenhunen JD (2006) PIXGRO: a model for simulating the ecosystem CO2 exchange and growth of spring barley. Ecol Models 190:260–276
CAS
Article
Google Scholar
Ahlström A, Xia J, Arneth A, Luo Y, Smith B (2015) Importance of vegetation dynamics for future terrestrial carbon cycling. Environ Res Lett 10:054019. doi:10.1088/1748-9326/10/5/054019
Article
Google Scholar
Allsopp R, Baldry DAT (1972) A general description of the Lambwe Valley area of South Nyanza District, Kenya. Bull World Health Organ 47:691–697
PubMed Central
CAS
PubMed
Google Scholar
Archer S, Boutton-Thomas W, Hibbard KA (2000) Trees in grasslands: biogeochemical consequences of woody plant expansion. In: Schulze E-D, Harrison SP, Heimann M, Holland EA, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego
Google Scholar
Ardö J, Mölder M, El-Tahir BA, Elkhidir HAM (2008) Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan. Carbon Balance Manag 3:7. doi:10.1186/1750-0680-3-7
PubMed Central
Article
PubMed
Google Scholar
Arnhold S, Otieno D, Onyango J, Koellner T, Huwe B, Tenhunen J (2015) Soil properties along a gradient from hill slopes to the savanna plains in the Lambwe Valley, Kenya. Soil Tillage Res 154:75–83
Article
Google Scholar
Barron-Gafford GA, Scott RL, Jenerette GD, Hamerlynck E, Huxman TE (2012) Temperature and precipitation controls over leaf- and ecosystem-level CO2 flux along a woody plant encroachment gradient. Glob Change Biol 18:1389–1400
Article
Google Scholar
Baudena M, D’Andrea F, Provenzale A (2010) An idealized model for tree–grass coexistence in savannas: the role of life stage, structure and fire disturbances. J Ecol 98:74–80
Article
Google Scholar
Belsky AJ (1994) Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass competition. Ecology 75:922–932
Article
Google Scholar
Belsky AJ, Amundson RG, Duxbury JM, Riha SJ, Ali AR, Mwonga SM (1989) The effect of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. J Appl Ecol 6:1005–1024
Article
Google Scholar
Belsky AJ, Mwonga SM, Duxbury JM (1993) Effects of widely spaced trees and livestock grazing on understory environments in tropical savannas. Agrofor Syst 24:1–20
Article
Google Scholar
Bhark EW, Small EE (2003) Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico. Ecosystems 6:185–196
Article
Google Scholar
Casper BB, Schenk HJ, Jackson RB (2003) Defining a plant’s belowground zone of influence. Ecology 84:2113–2321
Article
Google Scholar
Caylor KK, Shugart HH, Rodriguez-Iturbe I (2005) Tree canopy effects on simulated water stress in Southern African savannas. Ecosystems 8:17–32. doi:10.1007/s10021-004-0027-9
Article
Google Scholar
Cook KH, Vizy EK (2013) Projected changes in East African rainy seasons. J Clim. doi:10.1175/JCLI-D-12-00455.1
Google Scholar
Cook PG, Hatton TJ, Pidsley D, Herczeg AL, Held A, O’Grady A, Eamus D (1998) Water balance of a tropical woodland ecosystem, Northern Australia: a combination of micro-meteorological, soil physical and groundwater chemical approaches. J Hydrol 210:61–177
Article
Google Scholar
Cowan I (2002) Fit, fitter, fittest; where does optimisation fit in? Silva Fenn 36:745
Article
Google Scholar
Cowan I, Farquhar G (1977) Stomatal function in relation to leaf metabolism and environment. Symp Soc Exp Biol 31:471–505
CAS
PubMed
Google Scholar
Dai A (2011) Drought under global warming: a review. WIREs Clim Change 2:45–65
Article
Google Scholar
David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente J, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini C, David JS (2007) Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803
CAS
Article
PubMed
Google Scholar
Devitt DA, Smith SD (2002) Root-channel macropores enhance downward movement of water in the Mojave Desert ecosystem. J Arid Environ 50:99–108
Article
Google Scholar
D’Odorico P, Caylor K, Okin GS, Scanlon TM (2007) On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J Geophys Res 112:G04010. doi:10.1029/2006JG000379
Google Scholar
Eamus D, Hutley LB, O’Grady AP (2001) Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiol 21:977–988
CAS
Article
PubMed
Google Scholar
Ewers BE, Mackay DS, Gower ST, Ahl DE, Burrows SN, Samanta SS (2002) Tree species effects on stand transpiration in northern Wisconsin. Water Resour Res 38(7):1103. doi:10.1029/2001WR000830
Google Scholar
Farquhar GD, Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological Plant Ecology II, 12/B. Springer, Berlin, pp 549–587
Chapter
Google Scholar
Frost P, Medina E, Menaut J-C, Solbrig O, Swift M, Walker B (1986) Responses of savannas to stress and disturbance. Biology International (I.U.B.S.). NTIS, 10, Paris
Gibbens RP, Lenz JM (2001) Root systems of some Chihuahuan Desert plants. J Arid Environ 49:221–263
Article
Google Scholar
Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320
Article
PubMed
Google Scholar
Hamerlynck EP, Scott RL, Moran MS, Schwander AM, Connor E, Huxman TE (2011) Inter- and under-canopy soil water, leaf-level and whole-plant gas exchange dynamics of a semi-arid perennial C4 grass. Oecologia 165:17–29
Article
PubMed
Google Scholar
Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ, Loomis RS (eds) Modeling crop photosynthesis- from biochemistry to canopy. Crop Science Society of America, Anaheim, pp 17–39
Google Scholar
Hudak T, Wessman CA (1998) Textural analysis of historical aerial photography to characterize woody plant encroachment in South African Savanna. Remote Sns Environ 66:317–330
Article
Google Scholar
Hutley LB, O’Grady AP, Eamus D (2000) Evapotranspiration from Eucalypt open-forest savanna of tropical Northern Australia. Funct Ecol 14:183–194
Article
Google Scholar
Huxman TE, Cable JM, Ignace DD, Eilts JA, English NB, Weltzin J, Williams DG (2004) Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141:295–305
Article
PubMed
Google Scholar
Jenerette GD, Scott RL, Huxman TE (2008) Whole ecosystem metabolic pulses following precipitation events. Funct Ecol 22:924–930
Article
Google Scholar
K’Otuto GO, Otieno DO, Seo B, Ogindo HO, Onyango JC (2013) Carbon dioxide exchange and biomass productivity of the herbaceous vegetation of a managed tropical humid savanna ecosystem in western Kenya. J Plant Ecol 6:286–297
Article
Google Scholar
Kutsch WL, Hanan N, Scholes RJ, McHugh I, Kubheka W, Eckhardt H, Williams C (2008) Response of carbon fluxes to water relations in a savanna ecosystem in South Africa. Biogeosciences 5:2197–2235
Article
Google Scholar
Le Roux X, Bariac T, Mariotti A (1995) Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna. Oecologia 104:147–155
Article
Google Scholar
Maitima JM, Olson JM, Mugatha SM, Mugisha S, Mutie IT (2010) Land use changes, impacts and options for sustaining productivity and livelihoods in the basin of lake Victoria. J Sustain Dev Afr 12:189–206
Google Scholar
Merbold L, Ardo J, Arneth A, Scholes RJ et al (2009) Precipitation as driver of carbon fluxes in 11 African ecosystems. Biogeosciences 6:1027–1041
CAS
Article
Google Scholar
Midgley GF, Thuiller W (2010) Potential responses of terrestrial biodiversity in Southern Africa to anthropogenic climate change. Reg Environ Change 11:127–135
Article
Google Scholar
Miranda AC, Miranda HS, Lloyd J et al (1997) Fluxes of carbon, water and energy over Brazilian cerrado, an analysis using eddy covariance and stable isotopes. Plant Cell Environ 20:315–328
CAS
Article
Google Scholar
Mordelet R, Abbadie L, Menaut J-C (1993) Effects of tree clumps on soil characteristics in a humid savanna of West Africa (Lamto, C6te d’Ivoire). Plant Soil 153:103–111
Article
Google Scholar
Myers BA, Duff GA, Eamus D, Fordyce IR, O’Grady A, Williams RJ (1997) Seasonal variation in water relations of trees of differing leaf phenology in a wet–dry tropical savanna near Darwin, northern, Australia. Aust J Bot 45:225–240
Article
Google Scholar
Noy-Meir I (1982) Stability of plant-herbivore models and possible applications to savanna. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer, Berlin, pp 591–609
Chapter
Google Scholar
O’Grady AP, Eamus D, Hutley LB (1999) Transpiration increases during the dry season: patterns of tree water use in eucalypt open-forests of northern Australia. Tree Physiol 19:591–597
Article
PubMed
Google Scholar
Otieno DO, Schmidt MWT, Kurz-Besson C, Lobo Do Vale R, Pereira JS, Tenhunen JD (2007) Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Tree Physiol 27:1179–1187
CAS
Article
PubMed
Google Scholar
Otieno DO, Wartinger M, Nishiwaki A, Hussain MZ, Muhr J, Borken W, Lischeid G (2009) Responses of CO2 exchange and primary production of the ecosystem components to environmental changes in a mountain peatland. Ecosystems 12:590–603
Article
Google Scholar
Otieno DO, Li Y-L, Oua Y-X, Chenga J, Liua S, Tanga X, Zhanga Q, Jung E, Zhanga D, Tenhunen J (2014) Stand characteristics and water use at two elevations in a sub-tropical evergreen forest in southern China. Agric For Meteorol 194:155–166
Article
Google Scholar
Owen K, Tenhunen J, Reischtein M, Wang Q, Falge E, Gayer R et al (2007) Comparison of seasonal changes in CO2 exchange capacity of ecosystems distributed along a north-south European transect under non water stressed conditions. Glob Change Biol 13:734–760
Article
Google Scholar
Roques KG, Oconnor TG, Watkinson AT (2001) Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J Appl Ecol 19:268–280
Article
Google Scholar
Ruidisch M, Nguyen TT, Li YL, Geyer R, Tenhunen J (2015) Estimation of annual spatial variations in forest production and crop yields at landscape scale in temperate climate regions. Special issue: long-term and interdisciplinary research on forest ecosystem functions: Challenges at Takayama site since 1993. Ecol Res 30:279–292
Article
Google Scholar
Sankaran M, Ratnam J, Hanan NP (2004) Tree–grass coexistence in savannas revisited—insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490
Article
Google Scholar
Schaap MG, Leij FJ, van Genuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176
Article
Google Scholar
Scholes RJ, Archer SR (1997) Tree–grass interactions in savannas. Ann Rev Ecol Syst 28:517–544
Article
Google Scholar
Scholes RJ, Walker BH (1993) The African savanna. Synthesis of the Nylsvley study. Cambridge University Press, Cambridge
Book
Google Scholar
Scott RL, Huxman TE, Williams DG, Goodrich DC (2006) Ecohydrological impacts of woody plant encroachment: seasonal patterns of water and carbon exchange within a semi-riparian environment. Glob Change Biol 12:311–324
Article
Google Scholar
Scott RL, Huxman TE, Barron-Gafford GA, Jenerette DG, Young JM, Hamerlynck EP (2014) When vegetation change alters ecosystem water availability. Glob Change Biol 20:2198–2210
Article
Google Scholar
Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extreme indices in the CMIP5 multi-model ensemble. Part 2: future climate projections. J Geophys Res Atmos 118:2473–2493
Article
Google Scholar
van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898
Article
Google Scholar
Veenendaal EM, Kolle O, Lloyd J (2004) Seasonal variation in energy fluxes and carbon dioxide exchange for a broad-leaved semi-arid savanna (mopane woodland) in southern Africa. Glob Change Biol 10:318–328
Article
Google Scholar
Walker BH, Noy-Meir I (1982) Aspects of the stability and resilience of savanna ecosystems. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer, Berlin, pp 556–590
Chapter
Google Scholar
Walter H (1971) In: Burnett JH (ed) Ecology of tropical and subtropical vegetation. Oliver & Boyd, Edinburgh
Wang L, D’Odorico P, Ringrose S, Coetzee S, Macko SA (2007) Biogeochemistry of Kalahari sands. J Arid Environ 71:259–279
Article
Google Scholar
Weltzin JF, Coughenour MB (1990) Savanna tree influence on understory vegetation and soil nutrients in northwestern Kenya. J Veg Sci 1:325–334
Article
Google Scholar
Williams CA, Albertson JD (2004) Soil moisture controls on canopy-scale water and carbon fluxes in an African savanna. Water Resour Res 40:W09302. doi:10.1029/2004WR003208
Google Scholar
Williams CA, Hanan NP, Neff JC, Scholes RJ, Berry JA, Denning AS, Baker DF (2007) Africa and the global carbon cycle. Carbon Balance Manag 2:3. doi:10.1186/1750-0680-2-3
PubMed Central
Article
PubMed
Google Scholar
Williams CA, Hanan N, Scholes RJ, Kutsch W (2009) Complexity in water and carbon dioxide fluxes following rain pulses in an African savanna. Oecologia 161:469–480
PubMed Central
Article
PubMed
Google Scholar
Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426
Article
Google Scholar
Xu L, Baldocchi DD (2003) Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol 23:865–877
Article
PubMed
Google Scholar