Skip to main content

Advertisement

Log in

Modeling the potential North American distribution of Russian olive, an invader of riparian ecosystems

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Russian olive (Elaeagnus angustifolia L., Elaeagnaceae) has gained notoriety as an invasive tree in the United States (US), particularly owing to its impacts within western riparian ecosystems. In Canada, its potential for range expansion has yet to be assessed, despite alarming infestations in parts of southern British Columbia (BC). Existing niche model predictions are of limited utility because they are restricted to the US, were constructed in the absence of higher latitude records in Canada, and did not consider potentially important soil-related predictors. Here, we address these gaps, and include more than 1400 new occurrence records for Canada, most of which were collected using Google Street View. Our Maxent niche models achieved excellent performance (AUC > 0.9), and identified mean temperature of the coldest quarter and topsoil pH as the first and second-most important predictor variables, respectively, neither of which was included in previously published niche models. High habitat suitability is predicted in areas of western Canada that presently lack occurrence records, including along several major rivers in south-central BC. Our findings should prove valuable to nascent detection and management efforts in western Canada, and also highlight the benefits of basing niche model predictions on occurrence records encompassing as much of the invaded range as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Google Scholar 

  • Bajer PG, Sullivan G, Sorensen PW (2009) Effects of a rapidly increasing population of common carp on vegetative cover and waterfowl in a recently restored Midwestern shallow lake. Hydrobiologia 632:235–245. doi:10.1007/s10750-009-9844-3

    Article  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77. doi:10.1016/j.ecolmodel.2013.12.012

    Article  Google Scholar 

  • Carman JG, Brotherson JD (1982) Comparisons of sites infested and not infested with Saltcedar (Tamarix pentandra) and Russian olive (Elaeagnus angustifolia). Weed Sci 30:360–364

    Google Scholar 

  • Catling PM, Oldham MJ, Sutherland DA et al (1997) The recent spread of Autumn-olive, Elaeagnus umbellata, into southern Ontario and its current status. Can F Nat 111:376–380

    Google Scholar 

  • Christensen EM (1963) Naturalization of Russian olive (Elaeagnus angustifolia L.) in Utah. Am Midl Nat 70:133–137

    Article  Google Scholar 

  • Collette LKD, Pither J (2015) Russian-olive (Elaeagnus angustifolia) Biology and ecology and its potential to invade Northern North American Riparian ecosystems. Invasive Plant Sci Manag 8:1–14

    Article  Google Scholar 

  • Crall AW, Newman GJ, Stohlgren TJ et al (2011) Assessing citizen science data quality: an invasive species case study. Conserv Lett 4:433–442. doi:10.1111/j.1755-263X.2011.00196.x

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi:10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. doi:10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Ensing DJ, Moffat CE, Pither J (2013) Taxonomic identification errors generate misleading ecological niche model predictions of an invasive hawkweed. Botany 91:137–147

    Article  Google Scholar 

  • ESRI (2012) ArcGIS desktop. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fischer RA, Valente JJ, Guilfoyle MP et al (2012) Bird community response to vegetation cover and composition in riparian habitats dominated by Russian olive (Elaeagnus angustifolia). Northwest Sci 86:39–52

    Article  Google Scholar 

  • Freeman EA, Moisen GG (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol Model 217:48–58. doi:10.1016/j.ecolmodel.2008.05.015

    Article  Google Scholar 

  • Friedman JM, Auble GT, Shafroth PB et al (2005) Dominance of non-native riparian trees in western USA. Biol Invasions 7:747–751. doi:10.1007/s10530-004-5849-z

    Article  Google Scholar 

  • Gallien L, Münkemüller T, Albert CH et al (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342. doi:10.1111/j.1472-4642.2010.00652.x

    Article  Google Scholar 

  • Guilbault KR, Brown CS, Friedman JM, Shafroth PB (2012) The influence of chilling requirement on the southern distribution limit of exotic Russian olive (Elaeagnus angustifolia) in western North America. Biol Invasions 14:1711–1724. doi:10.1007/s10530-012-0182-4

    Article  Google Scholar 

  • Gusta LV, Tyler NJ, Chen TH-H (1983) Deep undercooling in woody taxa growing north of the −40 °C isotherm. Plant Physiol 72:122–128. doi:10.1104/pp.72.1.122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herman DE, Stange CM, Quam VC (2010) North Dakota tree handbook: Russian-olive. http://www.ag.ndsu.edu/trees/handbook/th-3-93.pdf. Accessed 10 Jul 2014

  • Hijmans RJ, van Etten J (2014) raster: Geographic analysis and modeling with raster data. R package version 2.3-12. http://cran.r-project.org/web/packages/raster/. Accessed 28 Oct 2014

  • Hill MO, Smith AJE (1976) Principal component analysis of taxonomic data with multi-state discrete characters. Taxon 25:249–255

    Article  Google Scholar 

  • Hoffman JD, Narumalani S, Mishra DR et al (2008) Predicting potential occurrence and spread of invasive plant species along the North Platte River, Nebraska. Invasive Plant Sci Manag 1:359–367. doi:10.1614/IPSM-07-048.1

    Article  Google Scholar 

  • Jarnevich CS, Reynolds LV (2011) Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree. Biol Invasions 13:153–163. doi:10.1007/s10530-010-9798-4

    Article  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797. doi:10.1007/s10530-011-9963-4

    Article  Google Scholar 

  • Katz GL, Shafroth PB (2003) Biology, ecology and management of Elaeagnus angustifolia L. (Russian olive) in western North America. Wetlands 23:763–777

    Article  Google Scholar 

  • Kefu Z, Harris PJC (1992) Effect of salt stress on nodulation and nitrogenase activity in Elaeagnus angustifolia. Nitrogen Fixing Tree Res Reports 10:165–166

    Google Scholar 

  • Kindschy RR (1998) European starlings disseminate viable Russian-olive seeds. Northwest Nat 79:119–120

    Article  Google Scholar 

  • Kominoski JS, Follstad Shah JJ, Canhoto C et al (2013) Forecasting functional implications of global changes in riparian plant communities. Front Ecol Environ 11:423–432. doi:10.1890/120056

    Article  Google Scholar 

  • Lamers JPA, Khamzina A, Worbes M (2006) The analyses of physiological and morphological attributes of 10 tree species for early determination of their suitability to afforest degraded landscapes in the Aral Sea Basin of Uzbekistan. For Ecol Manage 221:249–259. doi:10.1016/j.foreco.2005.10.022

    Article  Google Scholar 

  • Liu S, Liang X-Z, Gao W, Stohlgren TJ (2014) Regional climate model downscaling may improve the prediction of alien plant species distributions. Front Earth Sci. doi:10.1007/s11707-014-0457-4

    Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. doi:10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Mack RN (2005) Predicting the identity of plant invaders: future contributions from horticulture. HortScience 40:1168–1174

    Google Scholar 

  • Madurapperuma BD, Oduor PG, Anar MJ, Kotchman LA (2013) Understanding Factors that Correlate or Contribute to Exotic Russian-olive (Elaeagnus angustifolia) Invasion at a Wildland-Urban Interface Ecosystem. Invasive Plant Sci Manag 6:130–139. doi:10.1614/IPSM-D-12-00021.1

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. doi:10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  • Mineau MM, Baxter CV, Marcarelli AM (2011) A non-native riparian tree (Elaeagnus angustifolia) changes nutrient dynamics in streams. Ecosystems 14:353–365. doi:10.1007/s10021-011-9415-0

    Article  CAS  Google Scholar 

  • Mineau MM, Baxter CV, Marcarelli AM, Minshall GW (2012) An invasive riparian tree reduces stream ecosystem efficiency via a recalcitrant organic matter subsidy. Ecology 93:1501–1508

    Article  PubMed  Google Scholar 

  • Motloung RF, Robertson MP, Rouget M, Wilson JRU (2014) Forestry trial data can be used to evaluate climate-based species distribution models in predicting tree invasions. NeoBiota 20:31–48. doi:10.3897/neobiota.20.5778

    Article  Google Scholar 

  • Nagler PL, Glenn EP, Jarnevich CS, Shafroth PB (2011) Distribution and abundance of Saltcedar and Russian olive in the Western United States. Crit Rev Plant Sci 30:508–523. doi:10.1080/07352689.2011.615689

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, et al (2013) Vegan: community ecology package. R package version 2.0-10. http://cran.r-project.org/package=vegan. Accessed 1 May 2014

  • Olea PP, Mateo-Tomás P (2013) Assessing species habitat using google street view: a case study of cliff-nesting vultures. PLoS One 8:e54582. doi:10.1371/journal.pone.0054582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olson TE, Knopf FL (1986) Naturalization of Russian-olive in the Western United States. West J Appl For 1:65–69

    Google Scholar 

  • Parkos JJ III, Santucci VJ Jr, Wahl DH (2003) Effects of adult common carp (Cyprinus carpio) on multiple trophic levels in shallow mesocosms. Can J Fish Aquat Sci 60:182–192. doi:10.1139/f03-011

    Article  Google Scholar 

  • Pearce CM, Smith DG (2001) Plains cottonwood’s last stand: can it survive invasion of Russian olive onto the Milk River, Montana floodplain? Environ Manage 28:623–637. doi:10.1007/s002670010248

    Article  CAS  PubMed  Google Scholar 

  • Pearce CM, Smith DG (2009) Rivers as conduits for long-distance dispersal of introduced weeds: example of Russian olive (Elaeagnus angustifolia) in the Northern Great Plains of North America. In: Van Devender T, Espinosa-Garcia FJ, Harper-Lore BL, Hubbard T (eds) Invasive plants on the move: controlling them in North America. Arizona-Sonora Desert Museum Press, Tucson, pp 231–240

    Google Scholar 

  • Peterson AT, Papes M, Kluza DA (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Sci 51:863–868. doi:10.1614/P2002-081

    Article  CAS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J et al (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/. Accessed 1 May 2014

  • Reichard SE (1997) Prevention of invasive plant introductions on national and local levels. In: Luken JO, Thieret JW (eds) Assessment and management of plant invasions. Springer, Heidelberg, pp 215–227

    Chapter  Google Scholar 

  • Rousselet J, Imbert C-E, Dekri A et al (2013) Assessing species distribution using google street view: a pilot study with the pine processionary moth. PLoS One 8:e74918. doi:10.1371/journal.pone.0074918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulte U, Hochkirch A, Lötters S et al (2012) Cryptic niche conservatism among evolutionary lineages of an invasive lizard. Glob Ecol Biogeogr 21:198–211. doi:10.1111/j.1466-8238.2011.00665.x

    Article  Google Scholar 

  • Singh R, Dwivedi SK, Ahmed Z (2008) Oleaster (Elaeagnus angustifolia L.): a less known multiple utility plant of cold arid high altitude region of India. Plant Arch 8:425–428

    Google Scholar 

  • Visser V, Langdon B, Pauchard A, Richardson DM (2014) Unlocking the potential of Google Earth as a tool in invasion science. Biol Invasions 16:513–534. doi:10.1007/s10530-013-0604-y

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883. doi:10.1111/j.1558-5646.2008.00482.x

    Article  PubMed  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611. doi:10.1111/j.1600-0587.2009.06142.x

    Article  Google Scholar 

  • Weber MJ, Brown ML (2011) Relationships among invasive common carp, native fishes and physicochemical characteristics in upper Midwest (USA) lakes. Ecol Freshw Fish 20:270–278. doi:10.1111/j.1600-0633.2011.00493.x

    Article  Google Scholar 

  • Whiting D, Card A, Wilson C, Reeder J (2011) CMG GardenNotes #224: Saline Soils. http://www.ext.colostate.edu/mg/gardennotes/224.pdf. Accessed 8 Jul 2014

  • Zitzer SF, Dawson JO (1989) Seasonal changes in nodular nitrogenase activity of Alnus glutinosa and Elaeagnus angustifolia. Tree Physiol 5:185–194

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the guidance and feedback provided by participants of the Russian olive symposium at the 2014 Northern Rockies Invasive Plant Council meeting, and for occurrence records provided by participants of the 2014 Tamarisk Coalition’s Research and Management conference. Thanks to Val Miller (B.C. Ministry of Forests, Lands, and Natural Resources Operations; (BC FLNRO)) and Rose De Clerck-Floate (Agriculture and Agri-Food Canada) for encouraging this research on Russian olive in Canada. Along with Bob Lalonde (UBC, Okanagan campus), they provided valuable feedback throughout. Emma Walker, Nicole Louiseize, and Grace Watts provided assistance with field and remote surveys. Financial support was provided by BC FLNRO and a Natural Sciences and Engineering Council of Canada Discovery Grant to J.P., and by UBC to L.K.D.C..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Pither.

Additional information

Communicated by Joy Nystrom Mast.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4581 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collette, L.K.D., Pither, J. Modeling the potential North American distribution of Russian olive, an invader of riparian ecosystems. Plant Ecol 216, 1371–1383 (2015). https://doi.org/10.1007/s11258-015-0514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0514-4

Keywords

Navigation