Skip to main content

Advertisement

Log in

The high vulnerability of Quercus robur to drought at its southern margin paves the way for Quercus ilex

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Populations growing at the warm margins of the species’ range are more prone to experience higher water stress compared to populations inhabiting the core of their distribution. Thus, assessing tree vulnerability to drought is crucial to improve prediction of forest mortality and species range limits. We quantified the abundance of two oak species (Quercus robur and Quercus ilex) along a water stress gradient in a coastal forest located at the southern edge of the distribution of Q. robur. We assessed their ecophysiological responses to drought during a wet and a dry year and determined their vulnerability to drought under field conditions. The abundance of Q. ilex was high all along the water stress gradient, whereas the abundance of Q. robur dramatically declined with decreasing water availability. During dry years, the level of native embolism was significantly higher for Q. robur than for Q. ilex due to species differences in vulnerability to xylem cavitation. Q. robur had a narrower hydraulic safety margin than Q. ilex and operated very close to the species threshold of hydraulic failure, making it highly vulnerable to drought-induced mortality. In the current context of increasing drought frequency and severity, survival of Q. robur populations will be threatened at warm range margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci USA 95:14839–14842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Augusto L, Badeau V, Arrouays D et al (2006) Caractérisation physico-chimique des sols à l’échelle d’une région naturelle à partir d’une compilation de données. Exemple des sols du massif forestier landais. Etude et gestion des sols 13:7–22

    Google Scholar 

  • Bakkenes M, Alkemade JRM, Ihle F et al (2002) Assessing effects of forescasted climate change on the diversity and distribution of European higher plants for 2050. Glob Change Biol 8:390–407

    Article  Google Scholar 

  • Barigah TS, Charrier O, Douris M et al (2013) Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann Bot 112:1431–1437

  • Batllori E, Gutierrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 96:1275–1288

    Article  Google Scholar 

  • Beckage B, Osborne B, Gavin DG et al (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc Natl Acad Sci USA 105:4197–4202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bigler C, Braker OU, Bugmann H et al (2006) Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Breda N, Cochard H, Dreyer E, Granier A (1993) Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water-stress. Ann For Sci 50:571–582

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brodribb T, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brodribb TJ, Bowman DJ, Nichols S et al (2010) Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol 188:533–542

    Article  PubMed  Google Scholar 

  • Buffault P (1942) Histoire des dunes maritimes de la Gascogne. Editions Delmas

  • Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the hadley centre climate model. J Hydrometeorol 7:1113–1125

    Article  Google Scholar 

  • Castro J, Zamora R, Hodar JA, Gomez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit : consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277

    Article  Google Scholar 

  • Cheaib A, Badeau V, Boe J et al (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15:533–544

    Article  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Breda N, Granier A, Aussenac G (1992) Vulnerability to air-embolism of 3 european oak species (Quercus petraea (Matt) Liebl, Quercus pubescens Willd, Quercus robur L). Ann For Sci 49:225–233

    Article  Google Scholar 

  • Cochard H, Breda N, Granier A (1996) Whole tree hydraulic conductance and water loss regulation in Quercus during drought: Evidence for stomatal control of embolism? Ann For Sci 53:197–206

    Article  Google Scholar 

  • Cui M, Smith WK (1991) Photosynthesis, water relations and mortality in Abies lasiocarpa seedlings during natural establishment. Tree Physiol 8:37–46

    Article  PubMed  Google Scholar 

  • David T, Henriques M, Kurz-Besson C et al (2007) Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803

    Article  CAS  PubMed  Google Scholar 

  • Davis MA, Wrage KJ, Reich PB et al (1999) Survival, growth, and photosynthesis of tree seedlings competing with herbaceous vegetation along a water-light-nitrogen gradient. Plant Ecol 145:341–350

    Article  Google Scholar 

  • Delzon S, Cochard H (2014) Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytol 203:355–358

    Article  PubMed  Google Scholar 

  • Delzon S, Urli M, Samalens JC et al (2013) Field evidence of colonisation by Holm oak, at the northern margin of its distribution range, during the Anthropocene period. PLoS One 8:e80443

    Article  PubMed Central  PubMed  Google Scholar 

  • Devi N, Hagedorn F, Moiseev P et al (2008) Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the twentieth century. Glob Change Biol 14:1581–1591

    Article  Google Scholar 

  • Domec JC, Gartner BL (2001) Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees-Struct Funct 15:204–214

    Article  Google Scholar 

  • Eilmann B, Rigling A (2012) Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol 32:178–187

    Article  PubMed  Google Scholar 

  • Engelbrecht BM, Comita LS, Condit R et al (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–83

    Article  CAS  PubMed  Google Scholar 

  • Galiano L, Martinez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of Scots Pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:978–991

    Article  CAS  Google Scholar 

  • Gitlin AR, Sthultz CM, Bowker MA et al (2006) Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conserv Biol 20:1477–1486

    Article  PubMed  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115

    Article  Google Scholar 

  • Hajek P, Leuschner C, Hertel D et al (2014) Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus. Tree Physiol. doi:10.1093/treephys/tpu048

    PubMed  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hoffmann WA, Marchin RM, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Change Biol 17:2731–2742

    Article  Google Scholar 

  • Hogg E, Brandt J, Michaelian M (2008) Impacts of a regional drought on the productivity, dieback, and biomass of western Canadian aspen forests. Can J Forest Res 38:1373–1384

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Iverson LR, Prasad AM (2001) Potential change in tree species richness and forest community types following climate change. Ecosystems 4:186–199

    Article  CAS  Google Scholar 

  • Iverson LR, Prasad AM, Mattews S (2008) Modeling potential climate change impacts on the trees of the northeastern United States. Mitig Adapt Strateg Glob Change 13:487–516

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374

    Article  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Jump A, Matyas C, Penuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  PubMed  Google Scholar 

  • Leck MA, Outred HA (2008) Seedling natural history. In: Seedling Ecology and Evolution (ed) Cambridge University Press, Cambridge, United-Kingdom, pp 17–56

  • Limousin JM, Rambal S, Ourcival JM et al (2009) Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob Change Biol 15:2163–2175

    Article  Google Scholar 

  • Malcolm JR, Markham A, Neilson RP, Garaci M (2002) Estimated migration rates under scenarios of global climate change. J Biogeogr 29:835–849

    Article  Google Scholar 

  • Martinez-Vilalta J, Mangiron M, Ogaya R et al (2003) Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Tree Physiol 23:747–758

    Article  PubMed  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the twenty first century. Science 305:994–997

    Article  CAS  PubMed  Google Scholar 

  • Meinzer FC, Johnson DM, Lachenbruch B et al (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930

    Article  Google Scholar 

  • Michaelian M, Hogg EH, Hall RJ, Arsenault E (2011) Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob Change Biol 17:2084–2094

    Article  Google Scholar 

  • Morecroft MD, Roberts JM (1999) Photosynthesis and stomatal conductance of mature canopy Oak (Quercus robur) and Sycamore (Acer pseudoplatanus) trees throughout the growing season. Funct Ecol 13:332–342

    Article  Google Scholar 

  • Morin X, Augspurger C, Chuine I (2007) Process-based modeling of species’ distributions: What limits temperate tree species’ range boundaries? Ecology 88:2280–2291

    Article  PubMed  Google Scholar 

  • Morin X, Viner D, Chuine I (2008) Tree species range shifts at a continental scale : new predictive insights from a process-based model. J Ecol 96:784–794

    Article  Google Scholar 

  • Mueller RC, Scudder CM, Porter ME et al (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093

    Article  Google Scholar 

  • Nakao K, Matsui T, Horikawa M et al (2011) Assessing the impact of land use and climate change on the evergreen broad-leaved species of Quercus acuta in Japan. Plant Ecol 212:229–243

    Article  Google Scholar 

  • Nardini A, Lo Gullo MA, Trifilò P, Salleo S (2014) The challenge of the Mediterranean climate to plant hydraulics: responses and adaptations. Environ Exp Bot 103:68–79

    Article  Google Scholar 

  • Negussie A, Aerts R, Gebrehiwot K, Muys B (2008) Seedling mortality causes recruitment limitation of Boswellia papyrifera in northern Ethiopia. J Arid Environ 72:378–383

    Article  Google Scholar 

  • ONF (2010) Aménagement forestier de la Forêt Domaniale d’Hourtin––période 2011–2030.

  • Oren R, Sperry JS, Katul GG et al (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526

    Article  Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107

    Article  Google Scholar 

  • Penuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140

    Article  Google Scholar 

  • Penuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30:829–837

    Article  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Quero JL, Sterck FJ, Martinez-Vilalta J, Villar R (2011) Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia 166:45–57

    Article  PubMed  Google Scholar 

  • Sanchez-Gomez D, Valladares F, Zavala MA (2006) Performance of seedlings of Mediterranean woody species under experimental gradients of irradiance and water availability: trade-offs and evidence for niche differentiation. New Phytol 170:795–805

    Article  PubMed  Google Scholar 

  • Sanchez-Salguero R, Navarro-Cerrillo RM, Camarero JJ, Fernandez-Cancio A (2012) Selective drought-induced decline of pine species in southeastern Spain. Clim Change 113:767–785

    Article  Google Scholar 

  • SIAEBVELG (2004) S.A.G.E. Lacs médocains––Etats des lieux––Schéma d’aménagement et de gestion des eaux. 132 pp.

  • Tognetti R, Longobucco A, Raschi A (1998) Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy. New Phytol 139:437–447

    Article  Google Scholar 

  • Triboulot MB, Fauveau ML, Breda N et al (1996) Stomatal conductance and xylem-sap abscisic acid (ABA) in adult oak trees during a gradually imposed drought. Ann For Sci 53:207–220

    Article  Google Scholar 

  • Turc L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann Agron 12:13–49

    Google Scholar 

  • Tyree MT, Cochard H (1996) Summer and winter embolism in oak: impact on water relations. Ann For Sci 53:173–180

    Article  Google Scholar 

  • Tyree MT, Sperry J (1989) Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Phys 40:19–38

    Article  Google Scholar 

  • Urli M, Porté AJ, Cochard H et al (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33:672–683

    Article  CAS  PubMed  Google Scholar 

  • Urli M, Delzon S, Eyermann A et al (2014) Inferring shifts in tree species distribution using asymmetric distribution curves: a case study in the Iberian mountains. J Veg Sci 25:147–159

    Article  Google Scholar 

  • Van Mantgem PJ, Stephenson NL (2007) Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecol Lett 10:909–916

    Article  PubMed  Google Scholar 

  • Walther GR, Berger S, Sykes MT (2005) An ecological “footprint” of climate change. Proc R Soc B 272:1427–1432

    Article  PubMed Central  PubMed  Google Scholar 

  • Waring RH (1987) Characteristics of trees predisposed to die. Bioscience 37:569–574

    Article  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, et al. (2009) Global wood density database. Dryad. http://hdl.handle.net/10255/dryad.235.

  • Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion in response to climate change. Glob Change Biol 18:1042–1052

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jean-Pierre Coste, David Robert, Pierre Assié, Philippe Bériou, and François Bottin of the French National Forest Office for technical assistance in the field. We also thank Yann Guengant, Clément Chomeau, and the Experimental Unit of Pierroton for the help with the experiment. This project was supported by the Baccara FP7-KBBE-2008-2-B no. 226299. M.U. was supported by a PhD Grant from the AXA Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgane Urli.

Additional information

Communicated by G. Stewart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urli, M., Lamy, JB., Sin, F. et al. The high vulnerability of Quercus robur to drought at its southern margin paves the way for Quercus ilex . Plant Ecol 216, 177–187 (2015). https://doi.org/10.1007/s11258-014-0426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0426-8

Keywords

Navigation