Plant Ecology

, Volume 215, Issue 3, pp 315–325 | Cite as

Pollinator sharing between mass-flowering oilseed rape and co-flowering wild plants: implications for wild plant pollination

  • Dara A. StanleyEmail author
  • Jane C. Stout


Pollinating insects are not only important in wild plant pollination, but also in the production of a large number of crops. Oilseed rape production is increasing globally due to demands for biofuels which may have impacts on pollinating insects which visit the crop and on the pollination services delivered to co-flowering wild plants. In this study, we tested (1) the degree of pollinator sharing between oilseed rape and native wild plants in field margins and hedgerows and (2) the effects of oilseed rape on the quality of pollination service delivered to these wild plants. We found large overlap between flower visitors of wild plants and oilseed rape, but the composition of species overlap differed with respect to each wild plant species. Nearly all individual visitors caught on both the crop and foraging on wild species carried crop pollen, but more than half the insects also carried pollen from wild plants. However, very little oilseed rape pollen was deposited on wild plant stigmas. This shows that (1) oilseed rape overlaps in pollinator niche with most co-flowering wild plants, and (2) crop pollen deposition on wild plant stigmas is low which may indicate that it is unlikely to cause reductions in seed set of wild plants, although this was not measured here. Furthermore, wild plants in field margins and hedgerows are important sources of alternative forage for pollinating insects even when a crop is mass flowering, and we suggest maintenance and augmentation of field margins and hedgerows to provide alternative forage for pollinator conservation to continue provision of pollination services to both crops and wild plants.


Wild bees Brassica napus canola Field margins Pollen transfer Hedgerows Pollination services Spill-over 



We thank the farmers for participating in this study and allowing us to sample on their land, and Conor Owens for assistance in the field. Ellen O’Carroll provided expert help with identifying and counting pollen grains from field B, and verifying specimens from field A. This research was funded by the project SIMBIOSYS (, 2007-B-CD-1-S1) as part of the Science, Technology, Research and Innovation for the Environment (STRIVE) Programme, financed by the Irish Government under the National Development Plan 2007–2013, administered on behalf of the Department of the Environment, Heritage and Local Government by the Irish Environmental Protection Agency (EPA).

Supplementary material

11258_2014_301_MOESM1_ESM.doc (334 kb)
Supplementary material 1 (DOC 334 kb)


  1. Aizen MA, Ashworth L, Galetto L (2002) Reproductive success in fragmented habitats: do compatibility systems and pollination specialisation matter? J Veg Sci 13:85–892. doi: 10.1111/j.1654-1103.2002.tb02118.x CrossRefGoogle Scholar
  2. Baker HG, Baker I (1986) The occurrence and significance of amino-acids in floral nectar. Plant Syst Evol 151(3–4):175–186. doi: 10.1007/bf02430273 CrossRefGoogle Scholar
  3. Bartomeus I, Bosch J, Vila M (2008) High invasive pollen transfer, yet low deposition on native stigmas in a Carpobrotus-invaded community. Ann Bot 102:417–424. doi: 10.1093/aob/mcn109 CrossRefPubMedGoogle Scholar
  4. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312(5772):431–433. doi: 10.1126/science.1123412 CrossRefPubMedGoogle Scholar
  5. Bjerknes AL, Totland O, Hegland SJ, Nielsen A (2007) Do alien plant invasions really affect pollination success in native plant species? Biol Conserv 138(1–2):1–12. doi: 10.1016/j.biocon.2007.04.015 CrossRefGoogle Scholar
  6. Bommarco R, Marini L, Vaissière B (2012) Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169:1025–1032. doi: 10.1007/s00442-012-2271-6 CrossRefPubMedGoogle Scholar
  7. Bosch J, Gonzalez AMM, Rodrigo A, Navarro D (2009) Plant–pollinator networks: adding the pollinator’s perspective. Ecol Lett 12(5):409–419. doi: 10.1111/j.1461-0248.2009.01296.x CrossRefPubMedGoogle Scholar
  8. Brittain C, Williams N, Kremen C, Klein A-M (2013) Synergistic effects of non-Apis bees and honey bees for pollination services. Proc R Soc B 280:1754. doi: 10.1098/rspb.2012.2767 CrossRefGoogle Scholar
  9. Brown BJ, Mitchell RJ (2001) Competition for pollination: effects of pollen of an invasive plant on seed set of a native congener. Oecologia 129(1):43–49. doi: 10.1007/s004420100700 CrossRefGoogle Scholar
  10. Burd M (1994) Bateman principle and plant reproduction—the role of pollen limitation in fruit and seed set. Bot Rev 60(1):83–139. doi: 10.1007/BF02856594 CrossRefGoogle Scholar
  11. Carolan JC, Murray TE, Fitzpatrick Ú, Crossley J, Schmidt H, Cederberg B, McNally L, Paxton RJ, Williams PH, Brown MJF (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS One 7(1):e29251. doi: 10.1371/journal.pone.0029251 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Carvalheiro LG, Seymour CL, Nicolson SW, Veldtman R (2012) Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. J Appl Ecol 49(6):1373–1383. doi: 10.1111/j.1365-2664.2012.02217.x CrossRefGoogle Scholar
  13. Chandler J, Rennison D (2005) Pollen identification for beekeepers. An illustrated guide to accompany Rex Sawyers’s book. University College Cardiff Pres, CardiffGoogle Scholar
  14. Colwell RK, Futuyma DJ (1971) On the measurement of niche breadth and overlap. Ecology 52(4):567–576. doi: 10.2307/1934144 CrossRefGoogle Scholar
  15. Cook SM, Awmack CS, Murray DA, Williams IH (2003) Are honey bees’ foraging preferences affected by pollen amino acid composition? Ecol Entomol 28(5):622–627. doi: 10.1046/j.1365-2311.2003.00548.x CrossRefGoogle Scholar
  16. Croxton PJ, Carvell C, Mountford JO, Sparks TH (2002) A comparison of green lanes and field margins as bumblebee habitat in an arable landscape. Biol Conserv 107(3):365–374. doi: 10.1016/S0006-3207(02)00074-5 CrossRefGoogle Scholar
  17. Cussans J, Goulson D, Sanderson R, Goffe L, Darvill B, Osborne JL (2010) Two bee-pollinated plant species show higher seed production when grown in gardens compared to arable farmland. PLoS One 5(7):e11753. doi: 10.1371/journal.pone.0011753 PubMedCentralCrossRefPubMedGoogle Scholar
  18. DAFF (2004) Pesticide usage survey—arable crops. Department of Agriculture, Fisheries and Food, DublinGoogle Scholar
  19. Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, OxfordGoogle Scholar
  20. Dicks LV, Corbet SA, Pywell RF (2002) Compartmentalization in plant–insect flower visitor webs. J Anim Ecol 71(1):32–43. doi: 10.1046/j.0021-8790.2001.00572.x CrossRefGoogle Scholar
  21. Diekotter T, Kadoya T, Peter F, Wolters V, Jauker F (2010) Oilseed rape crops distort plant–pollinator interactions. J Appl Ecol 47(1):209–214. doi: 10.1111/j.1365-2664.2009.01759.x CrossRefGoogle Scholar
  22. Dietzsch AC, Stanley DA, Stout JC (2011) Relative abundance of an invasive alien plant affects native pollination processes. Oecologia 167(2):469–479. doi: 10.1007/s00442-011-1987-z CrossRefPubMedGoogle Scholar
  23. Dormann CF, Gruber B, Frund J (2008) Introducing the bipartite package: analysing ecological networks R news 8(2):8–11Google Scholar
  24. EEB (2011) European Biodiesel Board Statistics. Accessed Sept 2012
  25. Free JB (1963) The flower constancy of honeybees. J Anim Ecol 32(1):119–131. doi: 10.2307/2521 CrossRefGoogle Scholar
  26. Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhoffer JH, Greenleaf SS, Holzschuh A, Isaacs R, Krewenka K, Mandelik Y, Mayfield MM, Morandin LA, Potts SG, Ricketts TH, Szentgyorgyi H, Viana BF, Westphal C, Winfree R, Klein AM (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14(10):1062–1072. doi: 10.1111/j.1461-0248.2011.01669.x CrossRefPubMedGoogle Scholar
  27. Gibson MR, Richardson DM, Pauw A (2012) Can floral traits predict an invasive plant’s impact on native plant–pollinator communities? J Ecol 100(5):1216–1223. doi: 10.1111/j.1365-2745.2012.02004.x CrossRefGoogle Scholar
  28. Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108. doi: 10.1038/nature11585 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Hanley ME, Franco M, Dean CE, Franklin EL, Harris HR, Haynes AG, Rapson SR, Rowse G, Thomas KC, Waterhouse BR, Knight ME (2011) Increased bumblebee abundance along the margins of a mass flowering crop: evidence for pollinator spill-over. Oikos 120(11):1618–1624. doi: 10.1111/j.1600-0706.2011.19233.x CrossRefGoogle Scholar
  30. Hannon LE, Sisk TD (2009) Hedgerows in an agri-natural landscape: potential habitat value for native bees. Biol Conserv 142(10):2140–2154. doi: 10.1016/j.biocon.2009.04.014 CrossRefGoogle Scholar
  31. Hayter KE, Cresswell JE (2006) The influence of pollinator abundance on the dynamics and efficiency of pollination in agricultural Brassica napus: implications for landscape-scale gene dispersal. J Appl Ecol 43(6):1196–1202. doi: 10.1111/j.1365-2664.2006.01219.x CrossRefGoogle Scholar
  32. Henry M, Béguin M, Requier F, Rollin O, Odoux J-F, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336(6079):348–350. doi: 10.1126/science.1215039 CrossRefPubMedGoogle Scholar
  33. Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2011) Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc B 278(1723):3444–3451. doi: 10.1098/rspb2011.0268 CrossRefPubMedGoogle Scholar
  34. Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2013) Mass-flowering crops enhance wild bee abundance. Oecologia 172(2):477–484. doi: 10.1007/s00442-012-2515-5 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477(7363):U196–199. doi: 10.1038/nature10282 CrossRefGoogle Scholar
  36. Jacobs JH, Clark SJ, Denholm I, Goulson D, Stoate C, Osborne JL (2009) Pollination biology of fruit-bearing hedgerow plants and the role of flower-visiting insects in fruit-set. Ann Bot 104(7):1397–1404. doi: 10.1093/aob/mcp236 CrossRefPubMedGoogle Scholar
  37. Klein AM, Brittain C, Hendrix SD, Thorp R, Williams N, Kremen C (2012) Wild pollination services to California almond rely on semi-natural habitat. J Appl Ecol 49(3):723–732. doi: 10.1111/j.1365-2664.2012.02144.x Google Scholar
  38. Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7(1):e29268. doi: 10.1371/journal.pone.0029268 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecol Lett 10(7):539–550. doi: 10.1111/j.1461-0248.2007.01055.x CrossRefPubMedGoogle Scholar
  40. Moore PD, Webb JA, Collinson ME (1999) Pollen analysis. Blackwell Scientific, OxfordGoogle Scholar
  41. Moragues E, Traveset A (2005) Effect of Carpobrotus spp. on the pollination success of native plant species of the Balearic Islands. Biol Conserv 122(4):611–619. doi: 10.1016/j.biocon.2004.09.015 CrossRefGoogle Scholar
  42. Morales CL, Traveset A (2008) Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit Rev Plant Sci 27(4):221–238. doi: 10.1080/07352680802205631 CrossRefGoogle Scholar
  43. Morales CL, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12(7):716–728. doi: 10.1111/j.1461-0248.2009.01319.x CrossRefPubMedGoogle Scholar
  44. Morandin L, Long RF, Pease C, Kremen C (2011) Hedgerows enhance beneficial insects on farms in California’s Central Valley. Calif Agric 65(4):197–201. doi: 10.3733/ca.v065n04p197 CrossRefGoogle Scholar
  45. Muchhala N, Potts MD (2007) Character displacement among bat-pollinated flowers of the genus Burmeistera: analysis of mechanism, process and pattern. Proc R Soc B 274(1626):2731–2737. doi: 10.1098/rspb 2007.0670CrossRefPubMedGoogle Scholar
  46. Muchhala N, Thomson JD (2012) Interspecific competition in pollination systems: costs to male fitness via pollen misplacement. Funct Ecol 26(2):476–482. doi: 10.1111/j.1365-2435.2011.01950.x CrossRefGoogle Scholar
  47. Murcia C, Feinsinger P (1996) Interspecific pollen loss by hummingbirds visiting flower mixtures: effects of floral architecture. Ecology 77(2):550–560. doi: 10.2307/2265629 CrossRefGoogle Scholar
  48. Paalhaar J, Boot WJ, van der Steen JJM, Calis JNM (2008) In-hive pollen transfer between bees enhances cross-pollination of plants. In: Proceedings of the Netherlands entomological society meetingGoogle Scholar
  49. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2012) Package “nlme”: Linear and nonlinear mixed effects models. R package version 3.1-104Google Scholar
  50. Pywell RF, Warman EA, Carvell C, Sparks TH, Dicks LV, Bennett D, Wright A, Critchley CNR, Sherwood A (2005) Providing foraging resources for bumblebees in intensively farmed landscapes. Biol Conserv 121(4):479–494. doi: 10.1016/j.biocon.2004.05.020 CrossRefGoogle Scholar
  51. Rader R, Howlett BG, Cunningham SA, Westcott DA, Newstrom-Lloyd LE, Walker MK, Teulon DAJ, Edwards W (2009) Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J Appl Ecol 46(5):1080–1087. doi: 10.1111/j.1365-2664.2009.01700.x CrossRefGoogle Scholar
  52. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9(5):603–614. doi: 10.1111/j.1461-0248.2006.00911.x CrossRefPubMedGoogle Scholar
  53. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  54. Regali A, Rasmont P (1995) New bioassays to evaluate diet in Bombus terrestris L. (Hymenoptera, Apidae). Apidologie 26(4):273–281. doi: 10.1051/apido:19950401 CrossRefGoogle Scholar
  55. Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monogr 70(4):617–643. doi:10.1890/0012-9615(2000)070[0617:wgpcop];2Google Scholar
  56. Sawyer R (1981) Pollen identification for beekeepers. University of Cardiff Press, CardiffGoogle Scholar
  57. Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. J Appl Ecol 50(2):335–344. doi: 10.1111/1365-2664.12060 CrossRefGoogle Scholar
  58. Stanley D, Gunning D, Stout J (2013) Pollinators and pollination of oilseed rape crops (Brassica napus L.) in Ireland: ecological and economic incentives for pollinator conservation. J Insect Conserv 17:1181–1189. doi: 10.1007/s10841-013-9599-z CrossRefGoogle Scholar
  59. Vila M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-Dewenter I, Stout JC, Tscheulin T (2009) Invasive plant integration into native plant–pollinator networks across Europe. Proc R Soc B 276(1674):3887–3893. doi: 10.1098/rspb2009.1076 CrossRefPubMedGoogle Scholar
  60. Williams I (1984) The concentrations of air-borne rape pollen over a crop of oil-seed rape (Brassica napus L.). J Agric Sci 103:353–357. doi: 10.1017/S0021859600047316 CrossRefGoogle Scholar
  61. Wolf S, Rohde M, Moritz RFA (2010) The reliability of morphological traits in the differentiation of Bombus terrestris and B. lucorum (Hymenoptera: Apidae). Apidologie 41(1):45–53. doi: 10.1051/apido/2009048 CrossRefGoogle Scholar
  62. Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126(23):5431–5440PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Botany Department, School of Natural Sciences and Trinity Centre for Biodiversity ResearchTrinity CollegeDublin 2Ireland
  2. 2.School of Biological SciencesRoyal Holloway, University of LondonEghamUK

Personalised recommendations