Plant Ecology

, Volume 214, Issue 12, pp 1431–1441

Germination response to various temperature regimes of four Mediterranean seeder shrubs across a range of altitudes



In dry-summer seasonal climates, the beginning of the rainy season can prompt germination under different temperatures, depending on altitude. Understanding germination responses to temperature with altitude is important in fire-prone environments for species regenerating after fire from seeds (seeders), particularly under changing climate. Here we investigated the role of temperature in four Mediterranean seeder shrubs from Central Spain. Seeds from 17 sites (285–1,253 m altitude), of two hard-seeded nanophanerophytes (Cistus ladanifer and C. salviifolius) and two soft-seeded chamaephytes (Lavandula pedunculata and Thymus mastichina) were investigated. Intact and heat shock treated seeds were set to germinate under four temperature regimes, including a treatment simulating future warming. GLM with binomial or gamma functions were used to test treatment effects using altitude as a covariate. Altitude was a significant covariate only in L. pedunculata. Temperature did not affect final germination in either Cistus, but it significantly affected T. mastichina, and interacted with altitude in L. pedunculata, whereby the higher the altitude the less it germinated with decreasing temperature. Germination speed (T50) was lower at colder temperatures in all but C. salviifolius that was insensitive to our treatments. Heat shock significantly increased final germination in both Cistus and T. mastichina, but did not interact with temperature or altitude. We conclude that germination response to temperature, including varying sensitivity with altitude, differed among these species; thus, changes in the timing of the onset of the rainy season will diversely affect populations at various altitudes. We discuss our results in a context of changing climate and fire.


Elevation gradient Global warming Niche breadth Physical dormancy Species range 


  1. Akaike H (1992) Information theory and an extension of the maximum likelihood principle. In: Kotz S, Johnson N (eds) Breakthroughs in statistics, vol 1. Springer, London, pp 610–624CrossRefGoogle Scholar
  2. Angosto T, Matilla AJ (1993) Variations in seeds of three endemic leguminous species at different altitudes. Physiol Plant 87:329–334CrossRefGoogle Scholar
  3. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San DiegoGoogle Scholar
  4. Baskin CC, Baskin JM (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol 15:139–152CrossRefGoogle Scholar
  5. Bell DT, Plummer JA, Taylor SK (1993) Seed germination ecology in southwestern Western Australia. Botan Rev 59:24–73CrossRefGoogle Scholar
  6. Cavieres LA, Arroyo MTK (2001) Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae). Altitudinal variation in the Mediterranean Andes of central Chile. Plant Ecol 149:1–8CrossRefGoogle Scholar
  7. Céspedes B, Torres I, Urbieta IR, Moreno JM (2012) Effects of changes in the timing and duration of the wet season on the germination of the soil seed bank of a seeder-dominated Mediterranean shrubland. Plant Ecol 213:919–931CrossRefGoogle Scholar
  8. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon WK, Laprise R, Magana Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Arritt R, Benestad R, Beniston M, Bromwich D, Caya D, Comiso J, de Elia R, Dethloff K (2007) Regional climate projections, Chap. 11. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  9. Cochrane A, Daws MI, Hay FR (2011) Seed-based approach for identifying flora at risk from climate change. Aust Ecol 36:923–935CrossRefGoogle Scholar
  10. Corral R, Pita JM, Pérez-García F (1990) Some aspects of seed germination in four species of Cistus L. Seed Sci Technol 18:321–325Google Scholar
  11. De Luis M, Verdú M, Raventós J (2008) Early to rise makes a plant healthy, wealthy and wise. Ecology 89:3061–3071CrossRefGoogle Scholar
  12. Donohue K (2002) Germination timing influences natural selection on life-history characters in Arabidopsis thaliana. Ecology 83:1006–1016CrossRefGoogle Scholar
  13. Espigares T, Peco B (1993) Mediterranean pasture dynamics: the role of germination. J Veg Sci 4:189–194CrossRefGoogle Scholar
  14. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Fuentes-Molina N, Estrelles E (2005) Respuesta germinativa de Brassica repanda (Wild.) DC. subsp maritima (Wilk.) Heywood., Lavandula pedunculata (Mill) Cav. y Silene cambessedesii Boiss. and Reut. Anales de Biología 27:63–68Google Scholar
  16. Galmés J, Medrano H, Flexas J (2006) Germination capacity and temperature dependence in Mediterranean species of the Balearic Islands. Investigación Agraria: Sistemas y Recursos Forestales 15:88–95Google Scholar
  17. Gilfedder L, Kirkpatrick JB (1994) Genecological variation in the germination, growth and morphology of four populations of a Tasmanian endangered perennial daisy, Leucochrysum albicans. Aust J Bot 42:431–440CrossRefGoogle Scholar
  18. Giménez-Benavides L, Milla R (2013) Comparative germination ecology of two altitudinal vicariant Saxifraga species endemic to the north of Spain. Plant Biol 15:593–600PubMedCrossRefGoogle Scholar
  19. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104CrossRefGoogle Scholar
  20. González Bernáldez F (1991) Ecological consequences of the abandonment of traditional land use systems in central Spain. In: Baudry J, Bunce RGH (eds) Land abandonment and its role in conservation. Zaragoza: CIHEAM. Options Méditerranéennes: Série A. Séminaires Méditerranéens (15) pp 23–29Google Scholar
  21. International Seed Testing Association (1999) International rules for seed testing. Seed Sci Technol 27: supplementGoogle Scholar
  22. Kadis C, Kounnamas C, Georghiou K (2010) Seed germination and conservation of endemic, rare, and threatened aromatic plants of Cyprus. Israel J Plant Sci 58:251–261CrossRefGoogle Scholar
  23. Keeley JE (1991) Seed germination and life history syndromes in the California chaparral. Bot Rev 57:81–116CrossRefGoogle Scholar
  24. Keeley J, Baer-Keeley M (1999) Role of charred wood, heat-shock, and light in germination of postfire phrygana species from the Eastern Mediterranean Basin. Israel J Plant Sci 47:11–16CrossRefGoogle Scholar
  25. Luna B, Moreno JM (2010) Range-size, local abundance and germination niche-breadth in Mediterranean plants of two life-forms. Plant Ecol 210:85–95CrossRefGoogle Scholar
  26. Luna B, Moreno JM, Cruz A, Fernández-González F (2007) Heat-shock and seed germination of a group of Mediterranean plant species growing in a burned area: an approach base on plant functional types. Environ Exp Bot 60:324–333CrossRefGoogle Scholar
  27. Luna B, Pérez B, Torres I, Moreno JM (2012) Effects of incubation temperature on seed germination of Mediterranean plants with different geographical distribution ranges. Folia Geobotanica 47:17–27CrossRefGoogle Scholar
  28. Mariko S, Koizumi H, Suzuki JI, Furukawa A (1993) Altitudinal variations in germination and growth responses of Reynoutria japonica populations on Mt Fuji to controlled thermal environment. Ecol Res 8:27–34CrossRefGoogle Scholar
  29. Matilla A, Gallardo M, Puga-Hermida MI (2005) Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci Res 15:63–76CrossRefGoogle Scholar
  30. McArthur ED, Meyer SE, Weber DJ (1987) Germination rate at low temperature: rubber rabbitbrush population differences. J Range Manag 40:530–533CrossRefGoogle Scholar
  31. Meyer SE, Allen PS (1999) Ecological genetics of seed germination regulation in Bromus tectorum L. I. Phenotypic variance among and within populations. Oecologia 120:27–34CrossRefGoogle Scholar
  32. Mondoni A, Probert R, Graziano R, Hay F, Bonomi C (2008) Habitat-correlated seed germination behaviour in populations of wood anemone (Anemone nemorosa L.) from northern Italy. Seed Sci Res 18:213–222CrossRefGoogle Scholar
  33. Moreira B, Pausas JG (2012) Tanned or burned: the role of fire in shaping physical seed dormancy. PLoS One 7(12):e51523. doi:10.1371/journal.pone.0051523 PubMedCrossRefGoogle Scholar
  34. Moreira B, Tormo J, Estrelles E, Pausas JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627–635PubMedCrossRefGoogle Scholar
  35. Moreira B, Tavsanoglu Ç, Pausas JG (2012) Local versus regional intraspecific variability in regeneration traits. Oecologia 168:671–677PubMedCrossRefGoogle Scholar
  36. Moreno JM, Zuazua E, Pérez B, Luna B, Velasco A, Resco de Dios V (2011) Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs. Biogeosciences 8:3721–3732CrossRefGoogle Scholar
  37. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, BellaterraGoogle Scholar
  38. Ooi MKJ, Auld TD, Denham AJ (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant Soil 353:289–303CrossRefGoogle Scholar
  39. Ortega M, Levassor C, Peco B (1997) Seasonal dynamics of Mediterranean pasture seed banks along environmental gradients. J Biogeogr 24:177–195CrossRefGoogle Scholar
  40. Pendleton BK, Meyer SE (2004) Habitat-correlated variation in blackbrush (Coleogyne ramosissima: Rosaceae) seed germination response. J Arid Environ 59:229–243CrossRefGoogle Scholar
  41. Pérez-García F (1997) Germination of Cistus ladanifer seeds in relation to parent material. Plant Ecol 133:57–62CrossRefGoogle Scholar
  42. Pérez-García F, González-Benito ME (2006) Seed germination of five Helianthemum species: effect of temperature and presowing treatments. J Arid Environ 65:688–693CrossRefGoogle Scholar
  43. Pérez-García F, Hornero J, Gozález-Benito ME (2003) Interpopulation variation in seed germination of five Mediterranean Labiatae shrubby species. Israel J Plant Sci 51:117–124CrossRefGoogle Scholar
  44. Probert RJ (2000) The role of temperature in the regulation of seed dormancy and germination. In: Fenner T (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. Cabi Publishing, Oxford, pp 261–292CrossRefGoogle Scholar
  45. Quintana JR, Cruz A, Fernández-González F, Moreno JM (2004) Time of germination and establishment success after fire of three obligate seeders in a Mediterranean shrubland of central Spain. J Biogeogr 31:241–249CrossRefGoogle Scholar
  46. Ramírez JA, Díaz M (2007) The role of temporal shrub encroachment for the maintenance of Spanish holm oak Quercus ilex dehesas. For Ecol Manage 255:1976–1983CrossRefGoogle Scholar
  47. Santana J, Porto M, Reino L, Beja P (2011) Long-term understory recovery after mechanical fuel reduction in Mediterranean cork oak forests. For Ecol Manage 261:447–459CrossRefGoogle Scholar
  48. Smith AP (1975) Altitudinal seed ecotypes in the Venezuelan Andes. Am Midl Nat 94:247–250CrossRefGoogle Scholar
  49. Thanos CA, Doussi MA (1995) Ecophysiology of seed germination in endemic labiates of Crete. Israel J Plant Sci 43:227–237CrossRefGoogle Scholar
  50. Thanos CA, Georghiou K (1988) Ecophysiology of fire-stimulated seed germination in Cistus incanus ssp. creticus (L.) Heywood and C. salviifolius L. Plant, Cell Environ 11:841–849CrossRefGoogle Scholar
  51. Thanos CA, Georghiou K, Kadis C, Christina P (1992) Cistaceae: a plant family with hard seeds. Isr J Bot 41:251–263Google Scholar
  52. Thanos CA, Kadis CC, Skarou F (1995) Ecophysiology of germination in the aromatic plants thyme, savory and oregano (Labiatae). Seed Sci Res 5:161–170CrossRefGoogle Scholar
  53. Thompson PA (1970) Germination of species of Caryophyllaceae in relation to their geographical distribution in Europe. Ann Bot 34:427–449Google Scholar
  54. Thurling N (1966) Population differentiation in Australian Cardamine. III. Variation in germination response. Aust J Bot 14:189–194CrossRefGoogle Scholar
  55. Trabaud L, Oustric J (1989) Heat requirement for seed germination of three Cistus species in the garrigue of southern France. Flora 183:250–321Google Scholar
  56. Valbuena L, Tárrega R, Luis E (1992) Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. Int J Widland Fire 2:15–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Daniel Chamorro
    • 1
  • Belén Luna
    • 1
  • José M. Moreno
    • 1
  1. 1.Departamento de Ciencias AmbientalesUniversidad de Castilla-La ManchaToledoSpain

Personalised recommendations